Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torch.utils.checkpoint import checkpoint | |
import numpy as np | |
import math | |
from itertools import repeat | |
import collections.abc | |
from .attention import MemEffAttention | |
# From PyTorch internals | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): | |
return tuple(x) | |
return tuple(repeat(x, n)) | |
return parse | |
to_2tuple = _ntuple(2) | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class Mlp(nn.Module): | |
""" MLP as used in Vision Transformer, MLP-Mixer and related networks | |
""" | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
norm_layer=None, | |
bias=True, | |
drop=0., | |
use_conv=False, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
bias = to_2tuple(bias) | |
drop_probs = to_2tuple(drop) | |
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear | |
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) | |
self.act = act_layer() | |
self.drop1 = nn.Dropout(drop_probs[0]) | |
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() | |
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) | |
self.drop2 = nn.Dropout(drop_probs[1]) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop1(x) | |
x = self.norm(x) | |
x = self.fc2(x) | |
x = self.drop2(x) | |
return x |