Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021-2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and & DALL路E Mini team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" DalleBart model. """ | |
import math | |
import os | |
from functools import partial | |
from pickle import UnpicklingError | |
from typing import Any, Dict, Optional, Tuple, Union | |
import flax | |
import flax.linen as nn | |
import jax | |
import jax.numpy as jnp | |
import msgpack.exceptions | |
from einops import rearrange | |
from flax.core.frozen_dict import unfreeze | |
from flax.linen import combine_masks, make_causal_mask | |
from flax.linen import partitioning as nn_partitioning | |
from flax.linen.linear import PrecisionLike | |
from flax.serialization import from_bytes | |
from flax.traverse_util import flatten_dict, unflatten_dict | |
from jax import custom_jvp, lax | |
from jax.random import PRNGKey | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.file_utils import ( | |
FLAX_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
cached_path, | |
hf_bucket_url, | |
is_offline_mode, | |
is_remote_url, | |
) | |
from transformers.generation_flax_utils import FlaxSampleOutput | |
from transformers.modeling_flax_outputs import ( | |
FlaxBaseModelOutput, | |
FlaxBaseModelOutputWithPastAndCrossAttentions, | |
FlaxCausalLMOutputWithCrossAttentions, | |
FlaxSeq2SeqLMOutput, | |
) | |
from transformers.modeling_flax_utils import ACT2FN | |
from transformers.models.bart.modeling_flax_bart import ( | |
FlaxBartAttention, | |
FlaxBartForConditionalGeneration, | |
FlaxBartForConditionalGenerationModule, | |
FlaxBartModule, | |
FlaxBartPreTrainedModel, | |
) | |
from transformers.utils import logging | |
from .configuration import DalleBartConfig | |
from .utils import PretrainedFromWandbMixin | |
logger = logging.get_logger(__name__) | |
remat = nn_partitioning.remat | |
def smelu(beta: Any = 1.0): | |
""" | |
Implementation of "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" | |
https://arxiv.org/abs/2202.06499 | |
""" | |
def _smelu(x: Any) -> Any: | |
x = jnp.where(x <= -beta, 0.0, x) | |
return jnp.where(x >= beta, x, jnp.square(x + beta) / (4 * beta)) | |
_smelu.defjvps( | |
lambda g, ans, x: lax.select( | |
x == -beta, | |
lax.full_like(g, 0), | |
lax.select(x == beta, lax.full_like(g, 1), g), | |
) | |
) | |
return _smelu | |
ACT2FN.update({"smelu": smelu}) | |
# deepnet initialization | |
def deepnet_init(gain=1): | |
init = jax.nn.initializers.glorot_normal() | |
def _init(*args, **kwargs): | |
return gain * init(*args, **kwargs) | |
return _init | |
# deepnet gain | |
deepnet_gain = { | |
"encoder": { | |
"alpha": lambda config: 0.81 | |
* (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, | |
"beta": lambda config: 0.87 | |
* (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, | |
}, | |
"decoder": { | |
"alpha": lambda config: (3 * config.decoder_layers) ** 0.25, | |
"beta": lambda config: (12 * config.decoder_layers) ** -0.25, | |
}, | |
} | |
class RMSNorm(nn.Module): | |
""" | |
From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467 | |
Adapted from flax.linen.LayerNorm | |
""" | |
epsilon: float = 1e-6 | |
dtype: Any = jnp.float32 | |
param_dtype: Any = jnp.float32 | |
use_scale: bool = True | |
scale_init: Any = jax.nn.initializers.ones | |
def __call__(self, x): | |
reduction_axes = (-1,) | |
feature_axes = (-1,) | |
rms_sq = self._compute_rms_sq(x, reduction_axes) | |
return self._normalize( | |
self, | |
x, | |
rms_sq, | |
reduction_axes, | |
feature_axes, | |
self.dtype, | |
self.param_dtype, | |
self.epsilon, | |
self.use_scale, | |
self.scale_init, | |
) | |
def _compute_rms_sq(self, x, axes): | |
x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) | |
rms_sq = jnp.mean(jax.lax.square(x), axes) | |
return rms_sq | |
def _normalize( | |
self, | |
mdl, | |
x, | |
rms_sq, | |
reduction_axes, | |
feature_axes, | |
dtype, | |
param_dtype, | |
epsilon, | |
use_scale, | |
scale_init, | |
): | |
reduction_axes = nn.normalization._canonicalize_axes(x.ndim, reduction_axes) | |
feature_axes = nn.normalization._canonicalize_axes(x.ndim, feature_axes) | |
stats_shape = list(x.shape) | |
for axis in reduction_axes: | |
stats_shape[axis] = 1 | |
rms_sq = rms_sq.reshape(stats_shape) | |
feature_shape = [1] * x.ndim | |
reduced_feature_shape = [] | |
for ax in feature_axes: | |
feature_shape[ax] = x.shape[ax] | |
reduced_feature_shape.append(x.shape[ax]) | |
mul = lax.rsqrt(rms_sq + epsilon) | |
if use_scale: | |
scale = mdl.param( | |
"scale", scale_init, reduced_feature_shape, param_dtype | |
).reshape(feature_shape) | |
mul *= scale | |
y = mul * x | |
return jnp.asarray(y, dtype) | |
def norm(type, *args, **kwargs): | |
if type == "rmsnorm": | |
return RMSNorm(*args, **kwargs) | |
elif type == "layernorm": | |
return nn.LayerNorm(*args, **kwargs) | |
else: | |
raise ValueError(f"Unknown norm type {type}") | |
def dot_product_attention_weights( | |
query: Any, | |
key: Any, | |
bias: Optional[Any] = None, | |
mask: Optional[Any] = None, | |
embed_pos: Optional[Any] = None, | |
broadcast_dropout: bool = True, | |
dropout_rng: Optional[PRNGKey] = None, | |
dropout_rate: float = 0.0, | |
deterministic: bool = False, | |
dtype: Any = jnp.float32, | |
precision: PrecisionLike = None, | |
sinkhorn_iters: int = 1, | |
is_encoder: bool = False, | |
): | |
""" | |
Computes dot-product attention weights given query and key. | |
mask is included into the bias. | |
Adapted from flax.linen.attention.dot_product_attention_weights" | |
""" | |
assert query.ndim == key.ndim, "q, k must have same rank." | |
assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." | |
assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." | |
assert query.shape[-1] == key.shape[-1], "q, k depths must match." | |
# calculate attention matrix | |
depth = query.shape[-1] | |
query = query / jnp.sqrt(depth).astype(dtype) | |
# attn weight shape is (batch..., num_heads, q_length, kv_length) | |
attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) | |
# apply attention bias: masking, dropout, proximity bias, etc. | |
if bias is not None: | |
attn_weights = attn_weights + bias | |
# add relative position | |
if embed_pos is not None: | |
attn_weights = attn_weights + embed_pos | |
# normalize the attention weights | |
if not is_encoder or sinkhorn_iters == 1: | |
# sinkhorn does not work for causal (leaks info of future tokens into past) | |
attn_weights = jax.nn.softmax(attn_weights).astype(dtype) | |
else: | |
# adapted from https://github.com/lucidrains/sinkhorn-transformer | |
for i in range(sinkhorn_iters): | |
# when causal, some attn_weights have been set to -inf through bias | |
if i % 2 == 0: | |
attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True) | |
else: | |
attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True) | |
if mask is not None: | |
attn_weights = jnp.where(mask, attn_weights, -jnp.inf) | |
attn_weights = jnp.exp(attn_weights).astype(dtype) | |
# apply attention dropout | |
if not deterministic and dropout_rate > 0.0: | |
keep_prob = 1.0 - dropout_rate | |
if broadcast_dropout: | |
# dropout is broadcast across the batch + head dimensions | |
dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] | |
keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) | |
else: | |
keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) | |
multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( | |
keep_prob, dtype=dtype | |
) | |
attn_weights = attn_weights * multiplier | |
return attn_weights | |
class FlaxBartAttention(FlaxBartAttention): | |
""" | |
Edits: | |
- causal mask is used only in decoder and considers image_length | |
- scale attention heads per NormFormer paper | |
""" | |
is_encoder: bool = False | |
q_length: int = None | |
k_length: int = None | |
def setup(self) -> None: | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
dense = partial( | |
nn.Dense, | |
self.embed_dim, | |
use_bias=self.bias, | |
dtype=self.dtype, | |
) | |
gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( | |
self.config | |
) | |
self.q_proj = dense( | |
kernel_init=deepnet_init() | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std) | |
) | |
self.k_proj = dense( | |
kernel_init=deepnet_init() | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std) | |
) | |
self.v_proj = dense( | |
kernel_init=deepnet_init(gain) | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std) | |
) | |
self.out_proj = dense( | |
kernel_init=deepnet_init(gain) | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std) | |
) | |
self.dropout_layer = nn.Dropout(rate=self.dropout) | |
if self.config.use_head_scale: | |
self.head_scale = self.param( | |
"head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) | |
) | |
if self.config.use_cosine_attention: | |
self.tau = self.param( | |
"tau", | |
jax.nn.initializers.constant(self.config.tau_init), | |
(1, self.num_heads, 1, 1), | |
) | |
if self.config.use_swin_position_embeddings: | |
self.rel_bias = nn.Embed( | |
self.q_length, | |
self.k_length * self.num_heads, | |
embedding_init=deepnet_init() | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std), | |
) | |
if self.causal: | |
# used only in decoder | |
self.causal_mask = make_causal_mask( | |
jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" | |
) | |
def __call__( | |
self, | |
hidden_states: jnp.ndarray, | |
key_value_states: Optional[jnp.ndarray] = None, | |
attention_mask: Optional[jnp.ndarray] = None, | |
init_cache: bool = False, | |
deterministic: bool = True, | |
) -> Tuple[jnp.ndarray]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
batch_size = hidden_states.shape[0] | |
# get query proj | |
query_states = self.q_proj(hidden_states) | |
# get key, value proj | |
if is_cross_attention: | |
# cross_attentions | |
key_states = self.k_proj(key_value_states) | |
value_states = self.v_proj(key_value_states) | |
else: | |
# self_attention | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = self._split_heads(query_states) | |
key_states = self._split_heads(key_states) | |
value_states = self._split_heads(value_states) | |
# handle cache prepare causal attention mask | |
if self.causal: | |
query_length, key_length = query_states.shape[1], key_states.shape[1] | |
if self.has_variable("cache", "cached_key"): | |
mask_shift = self.variables["cache"]["cache_index"] | |
max_decoder_length = self.variables["cache"]["cached_key"].shape[1] | |
causal_mask = lax.dynamic_slice( | |
self.causal_mask, | |
(0, 0, mask_shift, 0), | |
(1, 1, query_length, max_decoder_length), | |
) | |
else: | |
causal_mask = self.causal_mask[:, :, :query_length, :key_length] | |
causal_mask = jnp.broadcast_to( | |
causal_mask, (batch_size,) + causal_mask.shape[1:] | |
) | |
# combine masks if needed | |
if attention_mask is not None and self.causal: | |
attention_mask = jnp.broadcast_to( | |
jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape | |
) | |
attention_mask = combine_masks(attention_mask, causal_mask) | |
elif self.causal: | |
attention_mask = causal_mask | |
elif attention_mask is not None: | |
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) | |
# During fast autoregressive decoding, we feed one position at a time, | |
# and cache the keys and values step by step. | |
if self.causal and (self.has_variable("cache", "cached_key") or init_cache): | |
key_states, value_states, attention_mask = self._concatenate_to_cache( | |
key_states, value_states, query_states, attention_mask | |
) | |
# Convert the boolean attention mask to an attention bias. | |
if attention_mask is not None: | |
# attention mask in the form of attention bias | |
attention_bias = lax.select( | |
attention_mask > 0, | |
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), | |
jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype), | |
) | |
else: | |
attention_bias = None | |
dropout_rng = None | |
if not deterministic and self.dropout > 0.0: | |
dropout_rng = self.make_rng("dropout") | |
if self.config.use_cosine_attention: | |
# normalize q and k | |
query_states = query_states / ( | |
jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 | |
) | |
key_states = key_states / ( | |
jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 | |
) | |
# relative position embeddings | |
if self.config.use_swin_position_embeddings: | |
position_ids = jnp.arange(self.q_length) | |
embed_pos = self.rel_bias(position_ids) | |
embed_pos = rearrange(embed_pos, "q (k h) -> 1 h q k", h=self.num_heads) | |
else: | |
embed_pos = None | |
attn_weights = dot_product_attention_weights( | |
query_states, | |
key_states, | |
bias=attention_bias, | |
mask=attention_mask, | |
embed_pos=embed_pos, | |
dropout_rng=dropout_rng, | |
dropout_rate=self.dropout, | |
broadcast_dropout=True, | |
deterministic=deterministic, | |
dtype=self.dtype, | |
precision=None, | |
sinkhorn_iters=self.config.sinkhorn_iters, | |
is_encoder=self.is_encoder, | |
) | |
if self.config.use_cosine_attention: | |
# divide by tau | |
attn_weights = attn_weights / jnp.maximum(self.tau, 0.01) | |
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) | |
if self.config.use_head_scale: | |
# per Normformer | |
attn_output = attn_output * self.head_scale | |
attn_output = self._merge_heads(attn_output) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights | |
class GLU(nn.Module): | |
"""From "GLU Variants Improve Transformer" by https://arxiv.org/abs/2002.05202""" | |
config: DalleBartConfig | |
ffn_dim: int | |
embed_dim: int | |
dtype: jnp.dtype = jnp.float32 | |
is_encoder: bool = False | |
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: | |
gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( | |
self.config | |
) | |
if self.config.ln_positions in ["normformer", "cogview", "preln"]: | |
x = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=self.config.force_ln_scale, | |
)(x) | |
w = nn.Dense( | |
self.ffn_dim, | |
dtype=self.dtype, | |
use_bias=self.config.use_bias, | |
kernel_init=deepnet_init(gain) | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std), | |
)(x) | |
w = ACT2FN[self.config.activation_function](w) | |
v = nn.Dense( | |
self.ffn_dim, | |
dtype=self.dtype, | |
use_bias=self.config.use_bias, | |
kernel_init=deepnet_init(gain) | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std), | |
)(x) | |
x = w * v | |
if self.config.ln_positions in ["normformer"]: | |
x = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=self.config.force_ln_scale, | |
)(x) | |
x = nn.Dropout(rate=self.config.activation_dropout)( | |
x, deterministic=deterministic | |
) | |
x = nn.Dense( | |
self.embed_dim, | |
dtype=self.dtype, | |
use_bias=self.config.use_bias, | |
kernel_init=deepnet_init(gain) | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std), | |
)(x) | |
if self.config.ln_positions in ["swinv2", "cogview"]: | |
x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) | |
x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) | |
return x | |
class FFN(nn.Module): | |
"""Simple FFN layer""" | |
config: DalleBartConfig | |
ffn_dim: int | |
embed_dim: int | |
dtype: jnp.dtype = jnp.float32 | |
is_encoder: bool = False | |
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: | |
gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( | |
self.config | |
) | |
if self.config.ln_positions in ["normformer", "cogview", "preln"]: | |
x = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=self.config.force_ln_scale, | |
)(x) | |
x = nn.Dense( | |
self.ffn_dim, | |
dtype=self.dtype, | |
use_bias=self.config.use_bias, | |
kernel_init=deepnet_init(gain) | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std), | |
)(x) | |
x = ACT2FN[self.config.activation_function](x) | |
if self.config.ln_positions in ["normformer"]: | |
x = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=self.config.force_ln_scale, | |
)(x) | |
x = nn.Dropout(rate=self.config.activation_dropout)( | |
x, deterministic=deterministic | |
) | |
x = nn.Dense( | |
self.embed_dim, | |
dtype=self.dtype, | |
use_bias=self.config.use_bias, | |
kernel_init=deepnet_init(gain) | |
if self.config.use_deepnet_scaling | |
else jax.nn.initializers.normal(self.config.init_std), | |
)(x) | |
if self.config.ln_positions in ["swinv2", "cogview"]: | |
x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) | |
x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) | |
return x | |
class FlaxBartEncoderLayer(nn.Module): | |
""" | |
Edits: | |
- no bias | |
- use custom FlaxBartAttention | |
""" | |
config: DalleBartConfig | |
dtype: jnp.dtype = jnp.float32 | |
add_norm: bool = False | |
use_scale: bool = True | |
def __call__( | |
self, | |
hidden_states: jnp.ndarray, | |
attention_mask: jnp.ndarray, | |
output_attentions: bool = True, | |
deterministic: bool = True, | |
) -> Tuple[jnp.ndarray]: | |
res_gain = ( | |
deepnet_gain["encoder"]["alpha"](self.config) | |
if self.config.use_deepnet_scaling | |
else 1 | |
) | |
embed_dim = self.config.d_model | |
residual = hidden_states | |
if self.config.ln_positions in ["normformer", "cogview", "preln"]: | |
hidden_states = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=self.config.force_ln_scale, | |
)(hidden_states) | |
hidden_states, attn_weights = FlaxBartAttention( | |
config=self.config, | |
embed_dim=embed_dim, | |
num_heads=self.config.encoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
bias=self.config.use_bias, | |
dtype=self.dtype, | |
is_encoder=True, | |
q_length=self.config.max_text_length, | |
k_length=self.config.max_text_length, | |
)(hidden_states=hidden_states, attention_mask=attention_mask) | |
if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: | |
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( | |
hidden_states | |
) | |
hidden_states = nn.Dropout(rate=self.config.dropout)( | |
hidden_states, deterministic=deterministic | |
) | |
hidden_states = residual * res_gain + hidden_states | |
if self.config.ln_positions in ["postln"]: | |
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( | |
hidden_states | |
) | |
residual = hidden_states | |
ff_block = ( | |
GLU( | |
config=self.config, | |
ffn_dim=self.config.encoder_ffn_dim, | |
embed_dim=embed_dim, | |
dtype=self.dtype, | |
is_encoder=True, | |
) | |
if self.config.use_glu | |
else FFN( | |
config=self.config, | |
ffn_dim=self.config.encoder_ffn_dim, | |
embed_dim=embed_dim, | |
dtype=self.dtype, | |
is_encoder=True, | |
) | |
) | |
hidden_states = ff_block(hidden_states, deterministic=deterministic) | |
hidden_states = residual * res_gain + hidden_states | |
if self.add_norm or self.config.ln_positions in ["postln"]: | |
use_scale = ( | |
self.use_scale | |
or self.config.ln_positions == "postln" | |
or self.config.force_ln_scale | |
) | |
hidden_states = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=use_scale, | |
)(hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class FlaxBartDecoderLayer(nn.Module): | |
""" | |
Edits: | |
- no bias | |
- use custom FlaxBartAttention | |
""" | |
config: DalleBartConfig | |
dtype: jnp.dtype = jnp.float32 | |
add_norm: bool = False | |
use_scale: bool = False | |
def __call__( | |
self, | |
hidden_states: jnp.ndarray, | |
attention_mask: jnp.ndarray, | |
encoder_hidden_states: Optional[jnp.ndarray] = None, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
init_cache: bool = False, | |
output_attentions: bool = True, | |
deterministic: bool = True, | |
) -> Tuple[jnp.ndarray]: | |
res_gain = ( | |
deepnet_gain["decoder"]["alpha"](self.config) | |
if self.config.use_deepnet_scaling | |
else 1 | |
) | |
embed_dim = self.config.d_model | |
residual = hidden_states | |
# Self Attention | |
if self.config.ln_positions in ["normformer", "cogview", "preln"]: | |
hidden_states = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=self.config.force_ln_scale, | |
)(hidden_states) | |
hidden_states, attn_weights = FlaxBartAttention( | |
config=self.config, | |
embed_dim=embed_dim, | |
num_heads=self.config.decoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
causal=True, | |
bias=self.config.use_bias, | |
dtype=self.dtype, | |
is_encoder=False, | |
q_length=self.config.image_length, | |
k_length=self.config.image_length, | |
)( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
init_cache=init_cache, | |
) | |
if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: | |
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( | |
hidden_states | |
) | |
hidden_states = nn.Dropout(rate=self.config.dropout)( | |
hidden_states, deterministic=deterministic | |
) | |
hidden_states = residual * res_gain + hidden_states | |
if self.config.ln_positions in ["postln"]: | |
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( | |
hidden_states | |
) | |
# Cross Attention | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = hidden_states | |
if self.config.ln_positions in ["normformer", "cogview", "preln"]: | |
hidden_states = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=self.config.force_ln_scale, | |
)(hidden_states) | |
hidden_states, cross_attn_weights = FlaxBartAttention( | |
config=self.config, | |
embed_dim=embed_dim, | |
num_heads=self.config.decoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
bias=self.config.use_bias, | |
dtype=self.dtype, | |
is_encoder=False, | |
q_length=self.config.image_length, | |
k_length=self.config.max_text_length, | |
)( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
) | |
if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: | |
hidden_states = norm( | |
self.config.ln_type, dtype=self.dtype, epsilon=1e-05 | |
)(hidden_states) | |
hidden_states = nn.Dropout(rate=self.config.dropout)( | |
hidden_states, deterministic=deterministic | |
) | |
hidden_states = residual * res_gain + hidden_states | |
if self.config.ln_positions in ["postln"]: | |
hidden_states = norm( | |
self.config.ln_type, dtype=self.dtype, epsilon=1e-05 | |
)(hidden_states) | |
# Feed forward | |
residual = hidden_states | |
ff_block = ( | |
GLU( | |
config=self.config, | |
ffn_dim=self.config.decoder_ffn_dim, | |
embed_dim=embed_dim, | |
dtype=self.dtype, | |
is_encoder=False, | |
) | |
if self.config.use_glu | |
else FFN( | |
config=self.config, | |
ffn_dim=self.config.decoder_ffn_dim, | |
embed_dim=embed_dim, | |
dtype=self.dtype, | |
is_encoder=False, | |
) | |
) | |
hidden_states = ff_block(hidden_states, deterministic=deterministic) | |
hidden_states = residual * res_gain + hidden_states | |
if self.add_norm or self.config.ln_positions in ["postln"]: | |
use_scale = ( | |
self.use_scale | |
or self.config.ln_positions == "postln" | |
or self.config.force_ln_scale | |
) | |
hidden_states = norm( | |
self.config.ln_type, | |
dtype=self.dtype, | |
epsilon=1e-05, | |
use_scale=use_scale, | |
)(hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights, cross_attn_weights) | |
return outputs | |
class FlaxBartEncoderLayerCollection(nn.Module): | |
config: DalleBartConfig | |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation | |
""" | |
Edits: | |
- use custom FlaxBartEncoderLayer | |
- allow Gradient Checkpointing (nn.remat) | |
""" | |
def __call__( | |
self, | |
hidden_states, | |
attention_mask, | |
deterministic: bool = True, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
n_layers = self.config.encoder_layers | |
layer = ( | |
remat(FlaxBartEncoderLayer, static_argnums=(2, 3)) | |
if self.config.gradient_checkpointing | |
else FlaxBartEncoderLayer | |
) | |
for i in range(n_layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
# final layernorm on the output of the last layer | |
# or every 6 layers for Swin v2 | |
add_norm = ( | |
self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) | |
) or (self.config.use_final_ln_encoder and (i == n_layers - 1)) | |
# we don't need to scale the norm for the last layer | |
use_scale = i != n_layers - 1 | |
layer_outputs = layer( | |
self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale | |
)( | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
deterministic, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
# add hidden states from the last layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
outputs = [ | |
hidden_states, | |
all_hidden_states, | |
all_self_attns, | |
] | |
if not return_dict: | |
return tuple(v for v in outputs if v is not None) | |
return FlaxBaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class FlaxBartDecoderLayerCollection(nn.Module): | |
config: DalleBartConfig | |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation | |
""" | |
Edits: | |
- use custom FlaxBartDecoderLayer | |
- allow Gradient Checkpointing (nn.remat) | |
""" | |
def __call__( | |
self, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states: Optional[jnp.ndarray] = None, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
deterministic: bool = True, | |
init_cache: bool = False, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
): | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = ( | |
() if (output_attentions and encoder_hidden_states is not None) else None | |
) | |
n_layers = self.config.decoder_layers | |
layer = ( | |
remat(FlaxBartDecoderLayer, static_argnums=(4, 5, 6)) | |
if self.config.gradient_checkpointing | |
else FlaxBartDecoderLayer | |
) | |
for i in range(n_layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
# final layernorm on the output of the last layer | |
# or every 6 layers for Swin v2 | |
add_norm = ( | |
self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) | |
) or (self.config.use_final_ln_decoder and (i == n_layers - 1)) | |
# we don't need to scale the norm for the last layer | |
use_scale = i != n_layers - 1 | |
layer_outputs = layer( | |
self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale | |
)( | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
init_cache, | |
output_attentions, | |
deterministic, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
outputs = [ | |
hidden_states, | |
all_hidden_states, | |
all_self_attns, | |
all_cross_attentions, | |
] | |
if not return_dict: | |
return tuple(v for v in outputs if v is not None) | |
return FlaxBaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
class FlaxBartEncoder(nn.Module): | |
config: DalleBartConfig | |
embed_tokens: nn.Embed | |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation | |
""" | |
Edits: | |
- offset set to 0 (no padding token) | |
- use max_text_length instead of max_position_embeddings | |
- use custom FlaxBartEncoderLayerCollection | |
- embed_tokens cannot be None (issue at compile time) | |
""" | |
def setup(self): | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
embed_dim = self.config.d_model | |
self.padding_idx = self.config.pad_token_id | |
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 | |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 | |
# and adjust num_embeddings appropriately. Other models don't have this hack | |
self.offset = 0 | |
if self.config.use_absolute_position_embeddings: | |
self.embed_positions = nn.Embed( | |
self.config.max_text_length + self.offset, # image length for BOS | |
embed_dim, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) | |
self.layernorm_embedding = norm( | |
self.config.ln_type, dtype=self.dtype, epsilon=1e-05 | |
) | |
def __call__( | |
self, | |
input_ids, | |
attention_mask, | |
position_ids, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
deterministic: bool = True, | |
): | |
input_shape = input_ids.shape | |
input_ids = input_ids.reshape(-1, input_shape[-1]) | |
hidden_states = self.embed_tokens(input_ids) * self.embed_scale | |
if self.config.use_absolute_position_embeddings: | |
embed_pos = self.embed_positions(position_ids + self.offset) | |
hidden_states = hidden_states + embed_pos | |
hidden_states = self.layernorm_embedding(hidden_states) | |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) | |
outputs = self.layers( | |
hidden_states, | |
attention_mask, | |
deterministic=deterministic, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return outputs | |
return FlaxBaseModelOutput( | |
last_hidden_state=outputs.last_hidden_state, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class FlaxBartDecoder(nn.Module): | |
config: DalleBartConfig | |
embed_tokens: nn.Embed | |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation | |
""" | |
Edits: | |
- offset set to 0 (no padding token) | |
- use image_length instead of max_position_embeddings | |
- use custom FlaxBartDecoderLayerCollection | |
- embed_tokens cannot be None (issue at compile time) | |
""" | |
def setup(self): | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
embed_dim = self.config.d_model | |
self.padding_idx = self.config.pad_token_id | |
self.embed_scale = ( | |
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 | |
) | |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 | |
# and adjust num_embeddings appropriately. Other models don't have this hack | |
self.offset = 0 | |
if self.config.use_absolute_position_embeddings: | |
self.embed_positions = nn.Embed( | |
self.config.image_length + self.offset, # image length for BOS | |
embed_dim, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) | |
self.layernorm_embedding = norm( | |
self.config.ln_type, dtype=self.dtype, epsilon=1e-05 | |
) | |
def __call__( | |
self, | |
input_ids, | |
attention_mask, | |
position_ids, | |
encoder_hidden_states: Optional[jnp.ndarray] = None, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
init_cache: bool = False, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
deterministic: bool = True, | |
): | |
input_shape = input_ids.shape | |
input_ids = input_ids.reshape(-1, input_shape[-1]) | |
hidden_states = self.embed_tokens(input_ids) * self.embed_scale | |
if self.config.use_absolute_position_embeddings: | |
embed_pos = self.embed_positions(position_ids + self.offset) | |
hidden_states = hidden_states + embed_pos | |
hidden_states = self.layernorm_embedding(hidden_states) | |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) | |
outputs = self.layers( | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
deterministic=deterministic, | |
init_cache=init_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return outputs | |
return FlaxBaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=outputs.last_hidden_state, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |
class FlaxBartModule(FlaxBartModule): | |
""" | |
Edits | |
- use custom FlaxBartEncoder & FlaxBartDecoder | |
- use separate embeddings for Encoder & Decoder | |
""" | |
def setup(self): | |
encoder_embed_tokens = nn.Embed( | |
self.config.encoder_vocab_size, | |
self.config.d_model, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
decoder_embed_tokens = nn.Embed( | |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS | |
self.config.d_model, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.encoder = FlaxBartEncoder( | |
self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens | |
) | |
self.decoder = FlaxBartDecoder( | |
self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens | |
) | |
class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): | |
""" | |
Edits: | |
- added num_params property | |
- config_class replaced to DalleBartConfig | |
- __init__ accepts abstract_init which does uses parameter shape to initialize the model | |
- init weights on CPU with `load_on_cpu` | |
- restore weights on CPU with custom `from_pretrained` | |
""" | |
config_class = DalleBartConfig | |
def __init__( | |
self, | |
config: DalleBartConfig, | |
input_shape: Tuple[int] = (1, 1), | |
seed: int = 0, | |
dtype: jnp.dtype = jnp.float32, | |
abstract_init: bool = False, | |
load_on_cpu: bool = False, | |
init_weights: bool = True, | |
**kwargs, | |
): | |
module = self.module_class(config=config, dtype=dtype, **kwargs) | |
# adapted from HuggingFace FlaxPreTrainedModel | |
if config is None: | |
raise ValueError("config cannot be None") | |
if module is None: | |
raise ValueError("module cannot be None") | |
# Those are private to be exposed as typed property on derived classes. | |
self._config = config | |
self._module = module | |
# Those are public as their type is generic to every derived classes. | |
self.key = PRNGKey(seed) | |
self.dtype = dtype | |
if init_weights: | |
# get shape of params only | |
random_params = self.init_weights( | |
self.key, | |
input_shape, | |
abstract_init=abstract_init, | |
load_on_cpu=load_on_cpu, | |
) | |
# save required_params as set | |
self._required_params = set(flatten_dict(unfreeze(random_params)).keys()) | |
self.params = random_params | |
def init_weights( | |
self, rng=None, input_shape=(1, 1), abstract_init=False, load_on_cpu=False | |
): | |
if rng is None: | |
rng = self.key | |
init_fn = super().init_weights | |
if load_on_cpu: | |
init_fn = jax.jit(init_fn, static_argnums=(1,), backend="cpu") | |
if abstract_init: | |
# only set shape and dtype, load parameters separately | |
init_fn = partial(init_fn, input_shape=input_shape) | |
params = jax.eval_shape(init_fn, rng) | |
else: | |
params = init_fn(rng, input_shape) | |
return params | |
def num_params(self): | |
num_params = jax.tree_map( | |
lambda param: param.size, flatten_dict(unfreeze(self.params)) | |
).values() | |
return sum(list(num_params)) | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
dtype: jnp.dtype = jnp.float32, | |
*model_args, | |
**kwargs, | |
): | |
config = kwargs.pop("config", None) | |
cache_dir = kwargs.pop("cache_dir", None) | |
from_pt = kwargs.pop("from_pt", False) | |
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
revision = kwargs.pop("revision", None) | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
user_agent = { | |
"file_type": "model", | |
"framework": "flax", | |
"from_auto_class": from_auto_class, | |
} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
# Load config if we don't provide a configuration | |
if not isinstance(config, PretrainedConfig): | |
config_path = ( | |
config if config is not None else pretrained_model_name_or_path | |
) | |
config, model_kwargs = cls.config_class.from_pretrained( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
_from_auto=from_auto_class, | |
_from_pipeline=from_pipeline, | |
**kwargs, | |
) | |
else: | |
model_kwargs = kwargs | |
# Add the dtype to model_kwargs | |
model_kwargs["dtype"] = dtype | |
# Load model | |
if pretrained_model_name_or_path is not None: | |
if os.path.isdir(pretrained_model_name_or_path): | |
if from_pt and os.path.isfile( | |
os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) | |
): | |
# Load from a PyTorch checkpoint | |
archive_file = os.path.join( | |
pretrained_model_name_or_path, WEIGHTS_NAME | |
) | |
elif os.path.isfile( | |
os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME) | |
): | |
# Load from a Flax checkpoint | |
archive_file = os.path.join( | |
pretrained_model_name_or_path, FLAX_WEIGHTS_NAME | |
) | |
else: | |
raise EnvironmentError( | |
f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory " | |
f"{pretrained_model_name_or_path} or `from_pt` set to False" | |
) | |
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url( | |
pretrained_model_name_or_path | |
): | |
archive_file = pretrained_model_name_or_path | |
else: | |
archive_file = hf_bucket_url( | |
pretrained_model_name_or_path, | |
filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME, | |
revision=revision, | |
) | |
# redirect to the cache, if necessary | |
try: | |
resolved_archive_file = cached_path( | |
archive_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
user_agent=user_agent, | |
) | |
except EnvironmentError as err: | |
logger.error(err) | |
msg = ( | |
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" | |
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n" | |
f" (make sure '{pretrained_model_name_or_path}' is not a path to a local directory with something else, in that case)\n\n" | |
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n" | |
) | |
raise EnvironmentError(msg) | |
if resolved_archive_file == archive_file: | |
logger.info(f"loading weights file {archive_file}") | |
else: | |
logger.info( | |
f"loading weights file {archive_file} from cache at {resolved_archive_file}" | |
) | |
else: | |
resolved_archive_file = None | |
# init random models | |
model = cls(config, *model_args, **model_kwargs) | |
with open(resolved_archive_file, "rb") as state_f: | |
try: | |
state = from_bytes(cls, state_f.read()) | |
except (UnpicklingError, msgpack.exceptions.ExtraData) as e: | |
try: | |
with open(resolved_archive_file) as f: | |
if f.read().startswith("version"): | |
raise OSError( | |
"You seem to have cloned a repository without having git-lfs installed. Please install " | |
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " | |
"you cloned." | |
) | |
else: | |
raise ValueError from e | |
except (UnicodeDecodeError, ValueError): | |
raise EnvironmentError( | |
f"Unable to convert {archive_file} to Flax deserializable object. " | |
) | |
# if model is base model only use model_prefix key | |
if ( | |
cls.base_model_prefix not in dict(model.params) | |
and cls.base_model_prefix in state | |
): | |
state = state[cls.base_model_prefix] | |
# if model is head model and we are loading weights from base model | |
# we initialize new params dict with base_model_prefix | |
if ( | |
cls.base_model_prefix in dict(model.params) | |
and cls.base_model_prefix not in state | |
): | |
state = {cls.base_model_prefix: state} | |
# flatten dicts | |
state = flatten_dict(state) | |
random_state = flatten_dict(unfreeze(model.params)) | |
missing_keys = model.required_params - set(state.keys()) | |
unexpected_keys = set(state.keys()) - model.required_params | |
# Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not | |
# matching the weights in the model. | |
mismatched_keys = [] | |
for key in state.keys(): | |
if key in random_state and state[key].shape != random_state[key].shape: | |
if ignore_mismatched_sizes: | |
mismatched_keys.append( | |
(key, state[key].shape, random_state[key].shape) | |
) | |
state[key] = random_state[key] | |
else: | |
raise ValueError( | |
f"Trying to load the pretrained weight for {key} failed: checkpoint has shape " | |
f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. " | |
"Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this " | |
"model." | |
) | |
# add missing keys as random parameters | |
for missing_key in missing_keys: | |
state[missing_key] = random_state[missing_key] | |
# remove unexpected keys to not be saved again | |
for unexpected_key in unexpected_keys: | |
del state[unexpected_key] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " | |
f"initializing {model.__class__.__name__}: {unexpected_keys}\n" | |
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " | |
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n" | |
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect " | |
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." | |
) | |
else: | |
logger.info( | |
f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n" | |
) | |
if len(missing_keys) > 0: | |
logger.warning( | |
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " | |
f"and are newly initialized: {missing_keys}\n" | |
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
) | |
elif len(mismatched_keys) == 0: | |
logger.info( | |
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" | |
f"If your task is similar to the task the model of the checkpoint was trained on, " | |
f"you can already use {model.__class__.__name__} for predictions without further training." | |
) | |
if len(mismatched_keys) > 0: | |
mismatched_warning = "\n".join( | |
[ | |
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" | |
for key, shape1, shape2 in mismatched_keys | |
] | |
) | |
logger.warning( | |
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " | |
f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n" | |
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
) | |
# set correct parameters | |
model.params = unflatten_dict(state) | |
return model | |
class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): | |
""" | |
Edits: | |
- no bias | |
- lm_head set to image_vocab_size + 1 (for BOS) | |
- uses custom FlaxBartModule | |
""" | |
def setup(self): | |
self.model = FlaxBartModule(config=self.config, dtype=self.dtype) | |
self.lm_head = nn.Dense( | |
self.config.image_vocab_size | |
+ 1, # image vocab size + 1 for BOS to have same size as decoder inputs (for sharding) | |
use_bias=False, | |
dtype=self.dtype, | |
kernel_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
def __call__( | |
self, | |
input_ids, | |
attention_mask, | |
decoder_input_ids, | |
decoder_attention_mask, | |
position_ids, | |
decoder_position_ids, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
deterministic: bool = True, | |
): | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
position_ids=position_ids, | |
decoder_position_ids=decoder_position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=deterministic, | |
) | |
hidden_states = outputs[0] | |
if self.config.tie_word_embeddings: | |
shared_embedding = self.model.variables["params"]["shared"]["embedding"] | |
lm_logits = self.lm_head.apply( | |
{"params": {"kernel": shared_embedding.T}}, hidden_states | |
) | |
else: | |
lm_logits = self.lm_head(hidden_states) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return output | |
return FlaxSeq2SeqLMOutput( | |
logits=lm_logits, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
class SampleState: | |
cur_len: jnp.ndarray | |
sequences: jnp.ndarray | |
running_token: jnp.ndarray | |
is_sent_finished: jnp.ndarray | |
prng_key: jnp.ndarray | |
model_kwargs: Dict[str, jnp.ndarray] | |
model_kwargs_uncond: Dict[str, jnp.ndarray] | |
class DalleBart( | |
PretrainedFromWandbMixin, FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration | |
): | |
""" | |
Edits: | |
- renamed from FlaxBartForConditionalGeneration | |
- uses custom FlaxBartPreTrainedModel | |
- uses custom FlaxBartForConditionalGenerationModule | |
- no bias in decode method | |
- custom prepare_inputs_for_generation using "max_length - 1" to avoid issues | |
related to position embedding during model.generate() | |
- custom generate method to allow super conditions | |
""" | |
module_class = FlaxBartForConditionalGenerationModule | |
def decode( | |
self, | |
decoder_input_ids, | |
encoder_outputs, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
decoder_attention_mask: Optional[jnp.ndarray] = None, | |
decoder_position_ids: Optional[jnp.ndarray] = None, | |
past_key_values: dict = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
train: bool = False, | |
params: dict = None, | |
dropout_rng: PRNGKey = None, | |
): | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.return_dict | |
) | |
encoder_hidden_states = encoder_outputs[0] | |
if encoder_attention_mask is None: | |
batch_size, sequence_length = encoder_hidden_states.shape[:2] | |
encoder_attention_mask = jnp.ones((batch_size, sequence_length)) | |
batch_size, sequence_length = decoder_input_ids.shape | |
if decoder_attention_mask is None: | |
decoder_attention_mask = jnp.ones((batch_size, sequence_length)) | |
if decoder_position_ids is None: | |
if past_key_values is not None: | |
raise ValueError( | |
"Make sure to provide `decoder_position_ids` when passing `past_key_values`." | |
) | |
decoder_position_ids = jnp.broadcast_to( | |
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) | |
) | |
# Handle any PRNG if needed | |
rngs = {} | |
if dropout_rng is not None: | |
rngs["dropout"] = dropout_rng | |
inputs = {"params": params or self.params} | |
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be | |
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that | |
# it can be changed by FlaxBartAttention module | |
if past_key_values: | |
inputs["cache"] = past_key_values | |
mutable = ["cache"] | |
else: | |
mutable = False | |
def _decoder_forward( | |
module, | |
decoder_input_ids, | |
decoder_attention_mask, | |
decoder_position_ids, | |
**kwargs, | |
): | |
decoder_module = module._get_decoder_module() | |
outputs = decoder_module( | |
decoder_input_ids, | |
decoder_attention_mask, | |
decoder_position_ids, | |
**kwargs, | |
) | |
hidden_states = outputs[0] | |
if self.config.tie_word_embeddings: | |
shared_embedding = module.model.variables["params"]["shared"][ | |
"embedding" | |
] | |
lm_logits = module.lm_head.apply( | |
{"params": {"kernel": shared_embedding.T}}, hidden_states | |
) | |
else: | |
lm_logits = module.lm_head(hidden_states) | |
return lm_logits, outputs | |
outputs = self.module.apply( | |
inputs, | |
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), | |
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), | |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=not train, | |
rngs=rngs, | |
mutable=mutable, | |
method=_decoder_forward, | |
) | |
if past_key_values is None: | |
lm_logits, decoder_outputs = outputs | |
else: | |
(lm_logits, decoder_outputs), past = outputs | |
if return_dict: | |
outputs = FlaxCausalLMOutputWithCrossAttentions( | |
logits=lm_logits, | |
hidden_states=decoder_outputs.hidden_states, | |
attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
) | |
else: | |
outputs = (lm_logits,) + decoder_outputs[1:] | |
# add updated cache to model output | |
if past_key_values is not None and return_dict: | |
outputs["past_key_values"] = unfreeze(past["cache"]) | |
return outputs | |
elif past_key_values is not None and not return_dict: | |
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] | |
return outputs | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
max_length, | |
attention_mask: Optional[jnp.DeviceArray] = None, | |
decoder_attention_mask: Optional[jnp.DeviceArray] = None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# initializing the cache | |
batch_size, seq_length = decoder_input_ids.shape | |
past_key_values = self.init_cache(batch_size, max_length - 1, encoder_outputs) | |
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. | |
# But since the decoder uses a causal mask, those positions are masked anyways. | |
# Thus we can create a single static attention_mask here, which is more efficient for compilation | |
extended_attention_mask = jnp.ones((batch_size, max_length - 1), dtype="i4") | |
if decoder_attention_mask is not None: | |
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 | |
extended_attention_mask = lax.dynamic_update_slice( | |
extended_attention_mask, decoder_attention_mask, (0, 0) | |
) | |
else: | |
position_ids = jnp.broadcast_to( | |
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) | |
) | |
return { | |
"past_key_values": past_key_values, | |
"encoder_outputs": encoder_outputs, | |
"encoder_attention_mask": attention_mask, | |
"decoder_attention_mask": extended_attention_mask, | |
"decoder_position_ids": position_ids, | |
} | |
def generate( | |
self, | |
input_ids: jnp.ndarray, | |
attention_mask: Optional[jnp.ndarray] = None, | |
max_length: Optional[int] = None, | |
pad_token_id: Optional[int] = None, | |
bos_token_id: Optional[int] = None, | |
eos_token_id: Optional[int] = None, | |
decoder_start_token_id: Optional[int] = None, | |
do_sample: Optional[bool] = None, | |
prng_key: Optional[jnp.ndarray] = None, | |
top_k: Optional[int] = None, | |
top_p: Optional[float] = None, | |
temperature: Optional[float] = None, | |
num_beams: Optional[int] = None, | |
no_repeat_ngram_size: Optional[int] = None, | |
min_length: Optional[int] = None, | |
forced_bos_token_id: Optional[int] = None, | |
forced_eos_token_id: Optional[int] = None, | |
length_penalty: Optional[float] = None, | |
early_stopping: Optional[bool] = None, | |
trace: bool = True, | |
params: Optional[Dict[str, jnp.ndarray]] = None, | |
condition_scale: Optional[float] = 1.0, | |
input_ids_uncond: Optional[jnp.ndarray] = None, | |
attention_mask_uncond: Optional[jnp.ndarray] = None, | |
**model_kwargs, | |
): | |
"""Edit: Allow super conditioning.""" | |
# set init values | |
max_length = max_length if max_length is not None else self.config.max_length | |
bos_token_id = ( | |
bos_token_id if bos_token_id is not None else self.config.bos_token_id | |
) | |
pad_token_id = ( | |
pad_token_id if pad_token_id is not None else self.config.pad_token_id | |
) | |
eos_token_id = ( | |
eos_token_id if eos_token_id is not None else self.config.eos_token_id | |
) | |
decoder_start_token_id = ( | |
decoder_start_token_id | |
if decoder_start_token_id | |
else self.config.decoder_start_token_id | |
) | |
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) | |
if decoder_start_token_id is None and self.config.is_encoder_decoder: | |
raise ValueError( | |
"`decoder_start_token_id` has to be defined for encoder-decoder generation." | |
) | |
do_sample = do_sample if do_sample is not None else self.config.do_sample | |
num_beams = num_beams if num_beams is not None else self.config.num_beams | |
if self.config.is_encoder_decoder: | |
# add encoder_outputs to model_kwargs | |
if model_kwargs.get("encoder_outputs") is None: | |
model_kwargs_input = dict(model_kwargs) | |
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( | |
input_ids, | |
params, | |
{"attention_mask": attention_mask, **model_kwargs_input}, | |
) | |
if condition_scale != 1.0: | |
assert ( | |
input_ids_uncond is not None | |
), "`input_ids_uncond` has to be defined for super conditioning." | |
assert ( | |
do_sample is True | |
), "`do_sample` has to be True for super conditioning." | |
assert ( | |
num_beams == 1 | |
), "`num_beams` has to be 1 for super conditioning." | |
model_kwargs_uncond = ( | |
self._prepare_encoder_decoder_kwargs_for_generation( | |
input_ids_uncond, | |
params, | |
{ | |
"attention_mask": attention_mask_uncond, | |
**model_kwargs_input, | |
}, | |
) | |
) | |
else: | |
model_kwargs_uncond = None | |
# prepare decoder_input_ids for generation | |
input_ids = ( | |
jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id | |
) | |
if not do_sample and num_beams == 1: | |
logits_processor = self._get_logits_processor( | |
no_repeat_ngram_size, | |
min_length, | |
max_length, | |
eos_token_id, | |
forced_bos_token_id, | |
forced_eos_token_id, | |
) | |
return self._greedy_search( | |
input_ids, | |
max_length, | |
pad_token_id, | |
eos_token_id, | |
logits_processor=logits_processor, | |
trace=trace, | |
params=params, | |
model_kwargs=model_kwargs, | |
) | |
elif do_sample and num_beams == 1: | |
logits_warper = self._get_logits_warper( | |
top_k=top_k, top_p=top_p, temperature=temperature | |
) | |
logits_processor = self._get_logits_processor( | |
no_repeat_ngram_size, | |
min_length, | |
max_length, | |
eos_token_id, | |
forced_bos_token_id, | |
forced_eos_token_id, | |
) | |
return self._sample( | |
input_ids, | |
max_length, | |
pad_token_id, | |
eos_token_id, | |
prng_key, | |
logits_warper=logits_warper, | |
logits_processor=logits_processor, | |
trace=trace, | |
params=params, | |
model_kwargs=model_kwargs, | |
condition_scale=condition_scale, | |
model_kwargs_uncond=model_kwargs_uncond, | |
) | |
elif not do_sample and num_beams > 1: | |
# broadcast input_ids & encoder_outputs | |
input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams) | |
if "encoder_outputs" in model_kwargs: | |
model_kwargs["encoder_outputs"][ | |
"last_hidden_state" | |
] = self._expand_to_num_beams( | |
model_kwargs["encoder_outputs"]["last_hidden_state"], | |
num_beams=num_beams, | |
) | |
if "attention_mask" in model_kwargs: | |
model_kwargs["attention_mask"] = self._expand_to_num_beams( | |
model_kwargs["attention_mask"], num_beams=num_beams | |
) | |
logits_processor = self._get_logits_processor( | |
no_repeat_ngram_size, | |
min_length, | |
max_length, | |
eos_token_id, | |
forced_bos_token_id, | |
forced_eos_token_id, | |
) | |
return self._beam_search( | |
input_ids, | |
max_length, | |
pad_token_id, | |
eos_token_id, | |
length_penalty=length_penalty, | |
early_stopping=early_stopping, | |
logits_processor=logits_processor, | |
trace=trace, | |
params=params, | |
model_kwargs=model_kwargs, | |
) | |
else: | |
raise NotImplementedError("`Beam sampling is currently not implemented.") | |
def _sample( | |
self, | |
input_ids: None, | |
max_length: Optional[int] = None, | |
pad_token_id: Optional[int] = None, | |
eos_token_id: Optional[int] = None, | |
prng_key: Optional[jnp.ndarray] = None, | |
logits_processor=None, | |
logits_warper=None, | |
trace: bool = True, | |
params: Optional[Dict[str, jnp.ndarray]] = None, | |
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, | |
condition_scale: float = 1.0, | |
model_kwargs_uncond: Optional[Dict[str, jnp.ndarray]] = None, | |
): | |
# init values | |
max_length = max_length if max_length is not None else self.config.max_length | |
pad_token_id = ( | |
pad_token_id if pad_token_id is not None else self.config.pad_token_id | |
) | |
eos_token_id = ( | |
eos_token_id if eos_token_id is not None else self.config.eos_token_id | |
) | |
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) | |
batch_size, cur_len = input_ids.shape | |
eos_token_id = jnp.array(eos_token_id) | |
pad_token_id = jnp.array(pad_token_id) | |
cur_len = jnp.array(cur_len) | |
# per batch-item holding current token in loop. | |
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) | |
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) | |
# per batch-item state bit indicating if sentence has finished. | |
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) | |
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop | |
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`. | |
model = self.decode if self.config.is_encoder_decoder else self | |
# initialize model specific kwargs | |
model_kwargs = self.prepare_inputs_for_generation( | |
input_ids, max_length, **model_kwargs | |
) | |
if condition_scale != 1.0: | |
model_kwargs_uncond = self.prepare_inputs_for_generation( | |
input_ids, max_length, **model_kwargs_uncond | |
) | |
# initialize state | |
state = SampleState( | |
cur_len=cur_len, | |
sequences=sequences, | |
running_token=input_ids, | |
is_sent_finished=is_sent_finished, | |
prng_key=prng_key, | |
model_kwargs=model_kwargs, | |
model_kwargs_uncond=model_kwargs_uncond, | |
) | |
def sample_search_cond_fn(state): | |
"""state termination condition fn.""" | |
has_reached_max_length = state.cur_len == max_length | |
all_sequence_finished = jnp.all(state.is_sent_finished) | |
finish_generation = jnp.logical_or( | |
has_reached_max_length, all_sequence_finished | |
) | |
return ~finish_generation | |
def sample_search_body_fn(state): | |
"""state update fn.""" | |
prng_key, prng_key_next = jax.random.split(state.prng_key) | |
model_outputs = model( | |
state.running_token, params=params, **state.model_kwargs | |
) | |
logits = model_outputs.logits[:, -1] | |
# perform super conditioning | |
# Source: @RiversHaveWings - https://twitter.com/RiversHaveWings/status/1478093658716966912?s=20&t=xdm-wZ61Wf7OLnE_NJHZ1w | |
if condition_scale != 1.0: | |
model_outputs_uncond = model( | |
state.running_token, params=params, **state.model_kwargs_uncond | |
) | |
logits_uncond = model_outputs_uncond.logits[:, -1] | |
logits = logits_uncond + condition_scale * (logits - logits_uncond) | |
else: | |
model_outputs_uncond = None | |
# apply min_length, ... | |
logits = logits_processor(state.sequences, logits, state.cur_len) | |
# apply top_k, top_k, temperature | |
logits = logits_warper(logits, logits, state.cur_len) | |
next_token = jax.random.categorical(prng_key, logits, axis=-1) | |
next_is_sent_finished = state.is_sent_finished | ( | |
next_token == eos_token_id | |
) | |
next_token = ( | |
next_token * ~next_is_sent_finished | |
+ pad_token_id * next_is_sent_finished | |
) | |
next_token = next_token[:, None] | |
next_sequences = lax.dynamic_update_slice( | |
state.sequences, next_token, (0, state.cur_len) | |
) | |
next_model_kwargs = self.update_inputs_for_generation( | |
model_outputs, state.model_kwargs | |
) | |
next_model_kwargs_uncond = ( | |
self.update_inputs_for_generation( | |
model_outputs_uncond, state.model_kwargs_uncond | |
) | |
if condition_scale != 1.0 | |
else None | |
) | |
return SampleState( | |
cur_len=state.cur_len + 1, | |
sequences=next_sequences, | |
running_token=next_token, | |
is_sent_finished=next_is_sent_finished, | |
model_kwargs=next_model_kwargs, | |
model_kwargs_uncond=next_model_kwargs_uncond, | |
prng_key=prng_key_next, | |
) | |
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU | |
if input_ids.shape[1] > 1: | |
state = sample_search_body_fn(state) | |
if not trace: | |
state = self._run_loop_in_debug( | |
sample_search_cond_fn, sample_search_body_fn, state | |
) | |
else: | |
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state) | |
return FlaxSampleOutput(sequences=state.sequences) | |