Spaces:
Runtime error
Runtime error
Added access key
Browse files
app.py
CHANGED
@@ -2,10 +2,13 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
from datetime import datetime
|
|
|
5 |
|
6 |
from huggingface_hub import hf_hub_url, cached_download
|
7 |
from gensim.models.fasttext import load_facebook_model
|
8 |
|
|
|
|
|
9 |
# download model from huggingface hub
|
10 |
url = hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
|
11 |
cached_download(url)
|
@@ -21,7 +24,7 @@ def process(_input, topn):
|
|
21 |
|
22 |
_input = [s for s in _input if s]
|
23 |
|
24 |
-
if _input[0] !=
|
25 |
with open('log.txt', 'a') as f:
|
26 |
f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')
|
27 |
|
@@ -38,7 +41,7 @@ def process(_input, topn):
|
|
38 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
|
39 |
|
40 |
result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbors, frequencies)], columns=['Token', 'Cosine Similarity', 'Frequency'])
|
41 |
-
if _input[0] ==
|
42 |
with open('log.txt', 'r') as f:
|
43 |
prompts = f.readlines()
|
44 |
prompts = [p.strip().split('+++') for p in prompts]
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
from datetime import datetime
|
5 |
+
import os
|
6 |
|
7 |
from huggingface_hub import hf_hub_url, cached_download
|
8 |
from gensim.models.fasttext import load_facebook_model
|
9 |
|
10 |
+
ACCESS_KEY = os.environ.get('ACCESS_KEY')
|
11 |
+
|
12 |
# download model from huggingface hub
|
13 |
url = hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
|
14 |
cached_download(url)
|
|
|
24 |
|
25 |
_input = [s for s in _input if s]
|
26 |
|
27 |
+
if _input[0] != ACCESS_KEY:
|
28 |
with open('log.txt', 'a') as f:
|
29 |
f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')
|
30 |
|
|
|
41 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
|
42 |
|
43 |
result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbors, frequencies)], columns=['Token', 'Cosine Similarity', 'Frequency'])
|
44 |
+
if _input[0] == ACCESS_KEY:
|
45 |
with open('log.txt', 'r') as f:
|
46 |
prompts = f.readlines()
|
47 |
prompts = [p.strip().split('+++') for p in prompts]
|