Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import spacy
|
4 |
+
import language_tool_python
|
5 |
+
import json
|
6 |
+
import requests
|
7 |
+
|
8 |
+
# Initialize models and tools
|
9 |
+
nlp = spacy.load("en_core_web_sm")
|
10 |
+
language_tool = language_tool_python.LanguageTool('en-US')
|
11 |
+
spell_checker = pipeline("text2text-generation", model="oliverguhr/spelling-correction-english-base")
|
12 |
+
|
13 |
+
def preprocess_and_forward(text: str) -> str:
|
14 |
+
processed_text, preprocessing_results = preprocess_text(text)
|
15 |
+
|
16 |
+
try:
|
17 |
+
# Forward preprocessed text to context detection (space_9)
|
18 |
+
context_response = requests.post(
|
19 |
+
"https://api.gradio.app/v2/Frenchizer/space_9/predict",
|
20 |
+
json={"data": [processed_text]}
|
21 |
+
).json()
|
22 |
+
|
23 |
+
if "error" in context_response:
|
24 |
+
return json.dumps({
|
25 |
+
"error": "Context detection failed",
|
26 |
+
"preprocessing_results": preprocessing_results
|
27 |
+
})
|
28 |
+
|
29 |
+
context = context_response["data"][0]
|
30 |
+
|
31 |
+
# Return preprocessing and detected context
|
32 |
+
result = {
|
33 |
+
"preprocessing": preprocessing_results,
|
34 |
+
"context": context
|
35 |
+
}
|
36 |
+
return json.dumps(result)
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
return json.dumps({
|
40 |
+
"error": str(e),
|
41 |
+
"preprocessing_results": preprocessing_results
|
42 |
+
})
|
43 |
+
|
44 |
+
def preprocess_text(text: str):
|
45 |
+
result = {
|
46 |
+
"corrections": [],
|
47 |
+
"entities": [],
|
48 |
+
"tags": [],
|
49 |
+
"spell_suggestions": []
|
50 |
+
}
|
51 |
+
|
52 |
+
# Spell checking
|
53 |
+
matches = language_tool.check(text)
|
54 |
+
for match in matches:
|
55 |
+
if match.replacements:
|
56 |
+
result["corrections"].append({
|
57 |
+
"original": match.context[match.offsetInContext:match.offsetInContext + match.errorLength],
|
58 |
+
"suggestion": match.replacements[0]
|
59 |
+
})
|
60 |
+
|
61 |
+
# Transformer-based spell check
|
62 |
+
spell_checked = spell_checker(text, max_length=512)[0]['generated_text']
|
63 |
+
if spell_checked != text:
|
64 |
+
result["spell_suggestions"].append({
|
65 |
+
"original": text,
|
66 |
+
"corrected": spell_checked
|
67 |
+
})
|
68 |
+
|
69 |
+
# NER with spaCy
|
70 |
+
doc = nlp(text)
|
71 |
+
result["entities"] = [{"text": ent.text, "label": ent.label_} for ent in doc.ents]
|
72 |
+
|
73 |
+
# Extract potential tags
|
74 |
+
result["tags"] = [token.text for token in doc if token.text.startswith(('#', '@'))]
|
75 |
+
|
76 |
+
return text, result
|
77 |
+
|
78 |
+
# Gradio interface
|
79 |
+
with gr.Blocks() as demo:
|
80 |
+
input_text = gr.Textbox(label="Input Text")
|
81 |
+
output_json = gr.JSON(label="Processing Results")
|
82 |
+
preprocess_button = gr.Button("Process")
|
83 |
+
preprocess_button.click(fn=preprocess_and_forward, inputs=[input_text], outputs=[output_json])
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
demo.launch()
|