Fredrickkk commited on
Commit
e61fc62
1 Parent(s): 4ccfef8

Delete vehicle_attribute_v5.py

Browse files
Files changed (1) hide show
  1. vehicle_attribute_v5.py +0 -128
vehicle_attribute_v5.py DELETED
@@ -1,128 +0,0 @@
1
- import onnxruntime
2
- import numpy as np
3
- import cv2
4
- import copy
5
- import os
6
- import time
7
- from fonts.cv_puttext import cv2ImgAddText
8
-
9
- from car_plate.yolov5_plate_onnx_infer import init_car_plate_detect_model, init_car_plate_rec_model, detect_plate, rec_plate
10
- import re
11
-
12
- import json
13
-
14
- def cv_imread(path):
15
- img = cv2.imdecode(np.fromfile(path, dtype=np.uint8), -1)
16
- return img
17
-
18
- def allFilePath(rootPath, allFileList):
19
- fileList = os.listdir(rootPath)
20
- for temp in fileList:
21
- if os.path.isfile(os.path.join(rootPath, temp)):
22
- allFileList.append(os.path.join(rootPath, temp))
23
- else:
24
- allFilePath(os.path.join(rootPath, temp), allFileList)
25
-
26
- def draw_car_attribute(text, img0, n, rect):
27
- try:
28
- # Ensure all rectangle coordinates are integers
29
- rect = [int(x) for x in rect]
30
- labelSize = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
31
- sp_size = labelSize[1] + round(1.6 * labelSize[0][1])
32
- # Calculate the coordinates for the rectangle
33
- top_left = (rect[0], int(rect[1] + n * sp_size))
34
- bottom_right = (int(rect[0] + round(1.4 * labelSize[0][0])), rect[1] + (n + 1) * sp_size)
35
- # Draw the rectangle and text
36
- img0 = cv2.rectangle(img0, top_left, bottom_right, (255, 255, 255), cv2.FILLED)
37
- img0 = cv2ImgAddText(img0, text, rect[0], int(rect[1] + n * sp_size), (0, 0, 0), 18)
38
- return img0
39
- except Exception as e:
40
- print("Error drawing car attribute: ", e)
41
- print("Text: ", text)
42
- print("Coordinates: ", top_left, bottom_right)
43
- return img0 # Return the image unchanged in case of an error
44
-
45
- # Ensure this modified function is used in the draw_result function.
46
-
47
- def draw_result(img0, result_list):
48
- for result in result_list:
49
- if not result:
50
- continue
51
- n = 0
52
- rect = result.get('rect')
53
- if rect and len(rect) == 4: # Ensure rect has four elements
54
- cv2.rectangle(img0, (int(rect[0]), int(rect[1])), (int(rect[2]), int(rect[3])), (255, 0, 0), 2)
55
- if 'plate' in result and len(result['plate']) > 0:
56
- for plate_ in result['plate']:
57
- plate_no = plate_.get('plate_no')
58
- if plate_no and len(plate_no) > 0:
59
- result_plate = "PLATE NUMBER: " + plate_no
60
- plate_rect = plate_.get('rect')
61
- if plate_rect and len(plate_rect) == 4: # Check if plate_rect is correctly formed
62
- cv2.rectangle(img0, (int(plate_rect[0]), int(plate_rect[1])), (int(plate_rect[2]), int(plate_rect[3])), (0, 255, 0), 2)
63
- img0 = draw_car_attribute(result_plate, img0, n, plate_rect)
64
- n += 1
65
- else:
66
- print("Invalid 'rect' data:", rect)
67
- return img0
68
-
69
- class Predict:
70
- def __init__(self):
71
- providers = ['CPUExecutionProvider']
72
- car_plate_detect_model_path = r"weights/best_exp3.onnx" # plate detect onnx
73
- car_plate_rec_model_path = r"weights/plate_rec_color_0820.onnx" # plate recognition onnx
74
- self.session_detect_plate = init_car_plate_detect_model(car_plate_detect_model_path, providers) #
75
- self.session_rec_plate = init_car_plate_rec_model(car_plate_rec_model_path, providers) #
76
-
77
- def predict(self, img_data):
78
- img0 = copy.deepcopy(img_data)
79
- result_list = []
80
- outputs = detect_plate(img0, self.session_detect_plate, 640)
81
- plate_list = rec_plate(outputs, img0, self.session_rec_plate)
82
- plate_dict_list = []
83
- for result in plate_list:
84
- plate_dict = {}
85
- plate_no = result['plate_no']
86
- plate_rect = result['rect']
87
- plate_lands = result['landmarks']
88
- plate_dict['plate_no'] = plate_no
89
- plate_dict['rect'] = plate_rect
90
- plate_dict['landmarks'] = plate_lands
91
- plate_dict_list.append(plate_dict)
92
- if plate_dict_list:
93
- result_list.append({'rect': plate_rect, 'plate': plate_dict_list})
94
- return result_list
95
-
96
- if __name__ == "__main__":
97
- image_path = r"./canada" #
98
- output_path = './result_new_img' #
99
- file_list = []
100
- allFilePath(image_path, file_list)
101
- if not os.path.exists(output_path):
102
- os.mkdir(output_path)
103
- save_path = output_path
104
- count = 0
105
- sumTime = 0
106
-
107
- pedestrain_predictor = Predict()
108
-
109
- for pic_ in file_list:
110
- if not (pic_.endswith(".jpg") or pic_.endswith(".png")):
111
- continue
112
- count += 1
113
- time_begin = time.time()
114
- img = cv_imread(pic_)
115
- if img.shape[-1] == 4:
116
- img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
117
- img0 = copy.deepcopy(img)
118
- result_list = pedestrain_predictor.predict(img)
119
- time_end = time.time()
120
- time_gap = (time_end - time_begin)
121
- sumTime += time_gap
122
- print(count, pic_, time_gap)
123
- img0 = draw_result(img0, result_list)
124
- img_name = os.path.basename(pic_)
125
- save_img_path = os.path.join(save_path, img_name)
126
- cv2.imencode('.jpg', img0)[1].tofile(save_img_path)
127
-
128
- print(f"cost time {sumTime}, {sumTime / (len(file_list)) * 1000} ms per img")