FredZhang7's picture
Update app.py
402ce86 verified
raw
history blame
7.95 kB
import gradio as gr
import gc, copy, re
import urllib.request
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
ctx_limit = 4096
title = "RWKV-5-World-0.1B-v1-20230803-ctx4096.pth"
url = f"https://huggingface.co/BlinkDL/rwkv-5-world/resolve/main/{title}"
urllib.request.urlretrieve(url, title)
model = RWKV(model=title, strategy='cpu bf16')
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
def generate_prompt(instruction, input=None, history=None):
# parse the chat history into a string of user and assistant messages
history_str = ""
for pair in history:
history_str += f"Instruction: {pair[0]}\n\nAssistant: {pair[1]}\n\n"
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
if input and len(input) > 0:
return f"""{history_str}Instruction: {instruction}
Input: {input}
Response:"""
else:
return f"""{history_str}User: {instruction}
Assistant:"""
examples = [
["東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。", "", 300, 1.2, 0.5, 0.5, 0.5],
["Écrivez un programme Python pour miner 1 Bitcoin, avec des commentaires.", "", 300, 1.2, 0.5, 0.5, 0.5],
["Write a song about ravens.", "", 300, 1.2, 0.5, 0.5, 0.5],
["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.5, 0.5],
["Write a story using the following information", "A man named Alex chops a tree down", 300, 1.2, 0.5, 0.5, 0.5],
["Generate a list of adjectives that describe a person as brave.", "", 300, 1.2, 0.5, 0.5, 0.5],
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1.2, 0.5, 0.5, 0.5],
]
def evaluate(
instruction,
input=None,
token_count=333,
temperature=1.0,
top_p=0.5,
presencePenalty = 0.5,
countPenalty = 0.5,
history=None # add the history parameter to the evaluate function
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
instruction = re.sub(r'\n{2,}', '\n', instruction).strip().replace('\r\n','\n')
input = re.sub(r'\n{2,}', '\n', input).strip().replace('\r\n','\n')
ctx = generate_prompt(instruction, input, history) # pass the history to the generate_prompt function
print(ctx + "\n")
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
if '\n\n' in out_str:
break
del out
del state
gc.collect()
yield out_str.strip()
def user(message, chatbot):
chatbot = chatbot or []
return "", chatbot + [[message, None]]
def alternative(chatbot, history):
if not chatbot or not history:
return chatbot, history
chatbot[-1][1] = None
history[0] = copy.deepcopy(history[1])
return chatbot, history
with gr.Blocks(title=title) as demo:
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🌍World - {title}</h1>\n</div>")
with gr.Tab("Instruct mode"):
gr.Markdown(f"100% RNN RWKV-LM **trained on 100+ natural languages**. Demo limited to ctxlen {ctx_limit}. For best results, <b>keep your prompt short and clear</b>.")
with gr.Row():
with gr.Column():
instruction = gr.Textbox(lines=2, label="Instruction", value='東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。')
input = gr.Textbox(lines=2, label="Input", placeholder="")
token_count = gr.Slider(10, 512, label="Max Tokens", step=10, value=333)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.7)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
output = gr.Textbox(label="Output", lines=5)
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty, []], [output])
clear.click(lambda: None, [], [output])
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
with gr.Tab("Chat mode"):
with gr.Row():
chatbot = gr.Chatbot()
with gr.Column():
msg = gr.Textbox(scale=4, show_label=False, placeholder="Enter text and press enter", container=False)
clear = gr.Button("Clear")
with gr.Column():
token_count = gr.Slider(10, 512, label="Max Tokens", step=10, value=333)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.7)
def clear_chat():
return "", []
def user_msg(message, history):
history = history or []
return "", history + [[message, None]]
def chat(history):
# get the last user message and the additional parameters
message = history[-1][0]
instruction = msg.value
token_count = token_count.value
temperature = temperature.value
top_p = top_p.value
presence_penalty = presence_penalty.value
count_penalty = count_penalty.value
response = evaluate(instruction, None, token_count, temperature, top_p, presence_penalty, count_penalty, history)
history[-1][1] = response
return history
msg.submit(user_msg, [msg, chatbot], [msg, chatbot], queue=False).then(
chat, chatbot, chatbot, api_name="chat"
)
clear.click(clear_chat, None, [chatbot], queue=False)
demo.queue(max_size=10)
demo.launch(share=False)