Spaces:
Sleeping
Sleeping
# RMBG1.4 (diffusers implementation) | |
# Found on huggingface space of several projects | |
# Not sure which project is the source of this file | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from huggingface_hub import PyTorchModelHubMixin | |
class REBNCONV(nn.Module): | |
def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1): | |
super(REBNCONV, self).__init__() | |
self.conv_s1 = nn.Conv2d( | |
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, stride=stride | |
) | |
self.bn_s1 = nn.BatchNorm2d(out_ch) | |
self.relu_s1 = nn.ReLU(inplace=True) | |
def forward(self, x): | |
hx = x | |
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx))) | |
return xout | |
def _upsample_like(src, tar): | |
src = F.interpolate(src, size=tar.shape[2:], mode="bilinear") | |
return src | |
### RSU-7 ### | |
class RSU7(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512): | |
super(RSU7, self).__init__() | |
self.in_ch = in_ch | |
self.mid_ch = mid_ch | |
self.out_ch = out_ch | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) ## 1 -> 1/2 | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx = self.pool4(hx4) | |
hx5 = self.rebnconv5(hx) | |
hx = self.pool5(hx5) | |
hx6 = self.rebnconv6(hx) | |
hx7 = self.rebnconv7(hx6) | |
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1)) | |
hx6dup = _upsample_like(hx6d, hx5) | |
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
return hx1d + hxin | |
### RSU-6 ### | |
class RSU6(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU6, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx = self.pool4(hx4) | |
hx5 = self.rebnconv5(hx) | |
hx6 = self.rebnconv6(hx5) | |
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
return hx1d + hxin | |
### RSU-5 ### | |
class RSU5(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU5, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx = self.pool3(hx3) | |
hx4 = self.rebnconv4(hx) | |
hx5 = self.rebnconv5(hx4) | |
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
return hx1d + hxin | |
### RSU-4 ### | |
class RSU4(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU4, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx = self.pool1(hx1) | |
hx2 = self.rebnconv2(hx) | |
hx = self.pool2(hx2) | |
hx3 = self.rebnconv3(hx) | |
hx4 = self.rebnconv4(hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
return hx1d + hxin | |
### RSU-4F ### | |
class RSU4F(nn.Module): | |
def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
super(RSU4F, self).__init__() | |
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4) | |
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8) | |
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4) | |
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2) | |
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
def forward(self, x): | |
hx = x | |
hxin = self.rebnconvin(hx) | |
hx1 = self.rebnconv1(hxin) | |
hx2 = self.rebnconv2(hx1) | |
hx3 = self.rebnconv3(hx2) | |
hx4 = self.rebnconv4(hx3) | |
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) | |
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1)) | |
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1)) | |
return hx1d + hxin | |
class myrebnconv(nn.Module): | |
def __init__( | |
self, | |
in_ch=3, | |
out_ch=1, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
dilation=1, | |
groups=1, | |
): | |
super(myrebnconv, self).__init__() | |
self.conv = nn.Conv2d( | |
in_ch, | |
out_ch, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
) | |
self.bn = nn.BatchNorm2d(out_ch) | |
self.rl = nn.ReLU(inplace=True) | |
def forward(self, x): | |
return self.rl(self.bn(self.conv(x))) | |
class BriaRMBG(nn.Module, PyTorchModelHubMixin): | |
def __init__(self, config: dict = {"in_ch": 3, "out_ch": 1}): | |
super(BriaRMBG, self).__init__() | |
in_ch = config["in_ch"] | |
out_ch = config["out_ch"] | |
self.conv_in = nn.Conv2d(in_ch, 64, 3, stride=2, padding=1) | |
self.pool_in = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage1 = RSU7(64, 32, 64) | |
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage2 = RSU6(64, 32, 128) | |
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage3 = RSU5(128, 64, 256) | |
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage4 = RSU4(256, 128, 512) | |
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage5 = RSU4F(512, 256, 512) | |
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
self.stage6 = RSU4F(512, 256, 512) | |
# decoder | |
self.stage5d = RSU4F(1024, 256, 512) | |
self.stage4d = RSU4(1024, 128, 256) | |
self.stage3d = RSU5(512, 64, 128) | |
self.stage2d = RSU6(256, 32, 64) | |
self.stage1d = RSU7(128, 16, 64) | |
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) | |
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1) | |
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1) | |
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1) | |
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1) | |
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1) | |
def forward(self, x): | |
hx = x | |
hxin = self.conv_in(hx) | |
# hx = self.pool_in(hxin) | |
# stage 1 | |
hx1 = self.stage1(hxin) | |
hx = self.pool12(hx1) | |
# stage 2 | |
hx2 = self.stage2(hx) | |
hx = self.pool23(hx2) | |
# stage 3 | |
hx3 = self.stage3(hx) | |
hx = self.pool34(hx3) | |
# stage 4 | |
hx4 = self.stage4(hx) | |
hx = self.pool45(hx4) | |
# stage 5 | |
hx5 = self.stage5(hx) | |
hx = self.pool56(hx5) | |
# stage 6 | |
hx6 = self.stage6(hx) | |
hx6up = _upsample_like(hx6, hx5) | |
# -------------------- decoder -------------------- | |
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) | |
hx5dup = _upsample_like(hx5d, hx4) | |
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) | |
hx4dup = _upsample_like(hx4d, hx3) | |
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) | |
hx3dup = _upsample_like(hx3d, hx2) | |
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) | |
hx2dup = _upsample_like(hx2d, hx1) | |
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) | |
# side output | |
d1 = self.side1(hx1d) | |
d1 = _upsample_like(d1, x) | |
d2 = self.side2(hx2d) | |
d2 = _upsample_like(d2, x) | |
d3 = self.side3(hx3d) | |
d3 = _upsample_like(d3, x) | |
d4 = self.side4(hx4d) | |
d4 = _upsample_like(d4, x) | |
d5 = self.side5(hx5d) | |
d5 = _upsample_like(d5, x) | |
d6 = self.side6(hx6) | |
d6 = _upsample_like(d6, x) | |
return [ | |
F.sigmoid(d1), | |
F.sigmoid(d2), | |
F.sigmoid(d3), | |
F.sigmoid(d4), | |
F.sigmoid(d5), | |
F.sigmoid(d6), | |
], [hx1d, hx2d, hx3d, hx4d, hx5d, hx6] | |