Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import comfy | |
| # Check and add 'model_patch' to model.model_options['transformer_options'] | |
| def add_model_patch_option(model): | |
| if 'transformer_options' not in model.model_options: | |
| model.model_options['transformer_options'] = {} | |
| to = model.model_options['transformer_options'] | |
| if "model_patch" not in to: | |
| to["model_patch"] = {} | |
| return to | |
| # Patch model with model_function_wrapper | |
| def patch_model_function_wrapper(model, forward_patch, remove=False): | |
| def brushnet_model_function_wrapper(apply_model_method, options_dict): | |
| to = options_dict['c']['transformer_options'] | |
| control = None | |
| if 'control' in options_dict['c']: | |
| control = options_dict['c']['control'] | |
| x = options_dict['input'] | |
| timestep = options_dict['timestep'] | |
| # check if there are patches to execute | |
| if 'model_patch' not in to or 'forward' not in to['model_patch']: | |
| return apply_model_method(x, timestep, **options_dict['c']) | |
| mp = to['model_patch'] | |
| unet = mp['unet'] | |
| all_sigmas = mp['all_sigmas'] | |
| sigma = to['sigmas'][0].item() | |
| total_steps = all_sigmas.shape[0] - 1 | |
| step = torch.argmin((all_sigmas - sigma).abs()).item() | |
| mp['step'] = step | |
| mp['total_steps'] = total_steps | |
| # comfy.model_base.apply_model | |
| xc = model.model.model_sampling.calculate_input(timestep, x) | |
| if 'c_concat' in options_dict['c'] and options_dict['c']['c_concat'] is not None: | |
| xc = torch.cat([xc] + [options_dict['c']['c_concat']], dim=1) | |
| t = model.model.model_sampling.timestep(timestep).float() | |
| # execute all patches | |
| for method in mp['forward']: | |
| method(unet, xc, t, to, control) | |
| return apply_model_method(x, timestep, **options_dict['c']) | |
| if "model_function_wrapper" in model.model_options and model.model_options["model_function_wrapper"]: | |
| print('BrushNet is going to replace existing model_function_wrapper:', model.model_options["model_function_wrapper"]) | |
| model.set_model_unet_function_wrapper(brushnet_model_function_wrapper) | |
| to = add_model_patch_option(model) | |
| mp = to['model_patch'] | |
| if isinstance(model.model.model_config, comfy.supported_models.SD15): | |
| mp['SDXL'] = False | |
| elif isinstance(model.model.model_config, comfy.supported_models.SDXL): | |
| mp['SDXL'] = True | |
| else: | |
| print('Base model type: ', type(model.model.model_config)) | |
| raise Exception("Unsupported model type: ", type(model.model.model_config)) | |
| if 'forward' not in mp: | |
| mp['forward'] = [] | |
| if remove: | |
| if forward_patch in mp['forward']: | |
| mp['forward'].remove(forward_patch) | |
| else: | |
| mp['forward'].append(forward_patch) | |
| mp['unet'] = model.model.diffusion_model | |
| mp['step'] = 0 | |
| mp['total_steps'] = 1 | |
| # apply patches to code | |
| if comfy.samplers.sample.__doc__ is None or 'BrushNet' not in comfy.samplers.sample.__doc__: | |
| comfy.samplers.original_sample = comfy.samplers.sample | |
| comfy.samplers.sample = modified_sample | |
| if comfy.ldm.modules.diffusionmodules.openaimodel.apply_control.__doc__ is None or \ | |
| 'BrushNet' not in comfy.ldm.modules.diffusionmodules.openaimodel.apply_control.__doc__: | |
| comfy.ldm.modules.diffusionmodules.openaimodel.original_apply_control = comfy.ldm.modules.diffusionmodules.openaimodel.apply_control | |
| comfy.ldm.modules.diffusionmodules.openaimodel.apply_control = modified_apply_control | |
| # Model needs current step number and cfg at inference step. It is possible to write a custom KSampler but I'd like to use ComfyUI's one. | |
| # The first versions had modified_common_ksampler, but it broke custom KSampler nodes | |
| def modified_sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, | |
| latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): | |
| ''' | |
| Modified by BrushNet nodes | |
| ''' | |
| cfg_guider = comfy.samplers.CFGGuider(model) | |
| cfg_guider.set_conds(positive, negative) | |
| cfg_guider.set_cfg(cfg) | |
| ### Modified part ###################################################################### | |
| # | |
| to = add_model_patch_option(model) | |
| to['model_patch']['all_sigmas'] = sigmas | |
| # | |
| #sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) | |
| #sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) | |
| # | |
| # | |
| #if math.isclose(cfg, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: | |
| # to['model_patch']['free_guidance'] = False | |
| #else: | |
| # to['model_patch']['free_guidance'] = True | |
| # | |
| ####################################################################################### | |
| return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) | |
| # To use Controlnet with RAUNet it is much easier to modify apply_control a little | |
| def modified_apply_control(h, control, name): | |
| ''' | |
| Modified by BrushNet nodes | |
| ''' | |
| if control is not None and name in control and len(control[name]) > 0: | |
| ctrl = control[name].pop() | |
| if ctrl is not None: | |
| if h.shape[2] != ctrl.shape[2] or h.shape[3] != ctrl.shape[3]: | |
| ctrl = torch.nn.functional.interpolate(ctrl, size=(h.shape[2], h.shape[3]), mode='bicubic').to(h.dtype).to(h.device) | |
| try: | |
| h += ctrl | |
| except: | |
| print.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape)) | |
| return h | |