|
from ..utils import common_annotator_call, create_node_input_types
|
|
import comfy.model_management as model_management
|
|
|
|
class DensePose_Preprocessor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return create_node_input_types(
|
|
model=(["densepose_r50_fpn_dl.torchscript", "densepose_r101_fpn_dl.torchscript"], {"default": "densepose_r50_fpn_dl.torchscript"}),
|
|
cmap=(["Viridis (MagicAnimate)", "Parula (CivitAI)"], {"default": "Viridis (MagicAnimate)"})
|
|
)
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
|
|
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
|
|
|
def execute(self, image, model, cmap, resolution=512):
|
|
from controlnet_aux.densepose import DenseposeDetector
|
|
model = DenseposeDetector \
|
|
.from_pretrained(filename=model) \
|
|
.to(model_management.get_torch_device())
|
|
return (common_annotator_call(model, image, cmap="viridis" if "Viridis" in cmap else "parula", resolution=resolution), )
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"DensePosePreprocessor": DensePose_Preprocessor
|
|
}
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"DensePosePreprocessor": "DensePose Estimator"
|
|
} |