|
<script lang="ts"> |
|
import type { PicletGeneratorProps, PicletWorkflowState, CaptionType, CaptionLength, PicletStats } from '$lib/types'; |
|
import type { PicletInstance } from '$lib/db/schema'; |
|
import UploadStep from './UploadStep.svelte'; |
|
import WorkflowProgress from './WorkflowProgress.svelte'; |
|
import PicletResult from './PicletResult.svelte'; |
|
import { removeBackground } from '$lib/utils/professionalImageProcessing'; |
|
import { extractPicletMetadata } from '$lib/services/picletMetadata'; |
|
import { savePicletInstance, generatedDataToPicletInstance } from '$lib/db/piclets'; |
|
import { PicletType, TYPE_DATA } from '$lib/types/picletTypes'; |
|
import { EncounterService } from '$lib/db/encounterService'; |
|
|
|
|
|
interface Props extends PicletGeneratorProps { |
|
|
|
isTrainerMode?: boolean; |
|
onTrainerImageCompleted?: (imagePath: string, picletId: number) => void; |
|
onTrainerImageFailed?: (imagePath: string, error: string) => void; |
|
} |
|
|
|
let { |
|
joyCaptionClient, |
|
fluxClient, |
|
commandClient, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
isTrainerMode = false, |
|
onTrainerImageCompleted, |
|
onTrainerImageFailed |
|
}: Props = $props(); |
|
|
|
|
|
type TextGenerationClient = 'hunyuan' | 'command' | 'zephyr' | 'qwen' | 'dots'; |
|
let currentTextClient: TextGenerationClient = $state('command'); |
|
|
|
|
|
const getActiveTextClient = () => { |
|
if (!commandClient) { |
|
console.warn('Command client not yet initialized'); |
|
return null; |
|
} |
|
return commandClient; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
const generateText = async (prompt: string): Promise<string> => { |
|
const client = getActiveTextClient(); |
|
if (!client) { |
|
throw new Error(`Command client is not available`); |
|
} |
|
|
|
console.log(`Generating text with Command client...`); |
|
|
|
|
|
|
|
const message = { |
|
text: prompt, |
|
files: [] |
|
}; |
|
|
|
|
|
const result = await client.predict("/chat", { |
|
message: message, |
|
max_new_tokens: 2000 |
|
}); |
|
|
|
return result.data || ''; |
|
}; |
|
|
|
let workflowState: PicletWorkflowState = $state({ |
|
currentStep: 'upload', |
|
userImage: null, |
|
imageCaption: null, |
|
picletConcept: null, |
|
picletStats: null, |
|
imagePrompt: null, |
|
picletImage: null, |
|
error: null, |
|
isProcessing: false |
|
}); |
|
|
|
|
|
let imageQueue: File[] = $state([]); |
|
let currentImageIndex: number = $state(0); |
|
|
|
|
|
let trainerImagePaths: string[] = $state([]); |
|
|
|
const IMAGE_GENERATION_PROMPT = (concept: string) => `Extract ONLY the visual appearance from this monster concept and describe it in one concise sentence: |
|
"${concept}" |
|
|
|
Focus on: colors, body shape, eyes, limbs, mouth, and key visual features. Omit backstory, abilities, and non-visual details.`; |
|
|
|
|
|
async function importPiclet(picletData: PicletInstance) { |
|
workflowState.isProcessing = true; |
|
workflowState.currentStep = 'complete'; |
|
|
|
try { |
|
|
|
const savedId = await savePicletInstance(picletData); |
|
|
|
|
|
workflowState.picletImage = { |
|
imageUrl: picletData.imageUrl, |
|
imageData: picletData.imageData, |
|
seed: 0, |
|
prompt: 'Imported piclet' |
|
}; |
|
|
|
|
|
workflowState.isProcessing = false; |
|
alert(`Successfully imported ${picletData.nickname || picletData.typeId}!`); |
|
|
|
|
|
setTimeout(() => reset(), 2000); |
|
} catch (error) { |
|
workflowState.error = `Failed to import piclet: ${error}`; |
|
workflowState.isProcessing = false; |
|
} |
|
} |
|
|
|
async function handleImageSelected(file: File) { |
|
if (!joyCaptionClient || !fluxClient) { |
|
workflowState.error = "Services not connected. Please wait..."; |
|
return; |
|
} |
|
|
|
|
|
imageQueue = []; |
|
currentImageIndex = 0; |
|
|
|
workflowState.userImage = file; |
|
workflowState.error = null; |
|
|
|
|
|
const picletData = await extractPicletMetadata(file); |
|
if (picletData) { |
|
|
|
await importPiclet(picletData); |
|
} else { |
|
|
|
startWorkflow(); |
|
} |
|
} |
|
|
|
async function handleImagesSelected(files: File[]) { |
|
if (!joyCaptionClient || !fluxClient) { |
|
workflowState.error = "Services not connected. Please wait..."; |
|
return; |
|
} |
|
|
|
|
|
imageQueue = files; |
|
currentImageIndex = 0; |
|
|
|
await processCurrentImage(); |
|
} |
|
|
|
async function processCurrentImage() { |
|
if (currentImageIndex >= imageQueue.length) { |
|
|
|
console.log('All images processed!'); |
|
return; |
|
} |
|
|
|
const currentFile = imageQueue[currentImageIndex]; |
|
workflowState.userImage = currentFile; |
|
workflowState.error = null; |
|
|
|
|
|
const picletData = await extractPicletMetadata(currentFile); |
|
if (picletData) { |
|
|
|
await importPiclet(picletData); |
|
|
|
await advanceToNextImage(); |
|
} else { |
|
|
|
startWorkflow(); |
|
} |
|
} |
|
|
|
async function advanceToNextImage() { |
|
currentImageIndex++; |
|
|
|
if (currentImageIndex < imageQueue.length) { |
|
|
|
setTimeout(() => processCurrentImage(), 1000); |
|
} else if (isTrainerMode) { |
|
|
|
console.log('🔧 DEBUG: Trainer mode - waiting for next image to be queued'); |
|
|
|
currentImageIndex = 0; |
|
imageQueue = []; |
|
|
|
} else { |
|
|
|
imageQueue = []; |
|
currentImageIndex = 0; |
|
reset(); |
|
} |
|
} |
|
|
|
async function startWorkflow() { |
|
workflowState.isProcessing = true; |
|
|
|
try { |
|
|
|
await captionImage(); |
|
await new Promise(resolve => setTimeout(resolve, 100)); |
|
|
|
|
|
await generateConcept(); |
|
await new Promise(resolve => setTimeout(resolve, 100)); |
|
|
|
|
|
await extractSimpleStats(); |
|
await new Promise(resolve => setTimeout(resolve, 100)); |
|
|
|
|
|
await generateImagePrompt(); |
|
await new Promise(resolve => setTimeout(resolve, 100)); |
|
|
|
|
|
await generateMonsterImage(); |
|
|
|
|
|
await autoSavePicletAsCaught(); |
|
|
|
workflowState.currentStep = 'complete'; |
|
|
|
|
|
if (imageQueue.length > 1 || isTrainerMode) { |
|
setTimeout(() => advanceToNextImage(), 2000); |
|
} |
|
} catch (err) { |
|
console.error('Workflow error:', err); |
|
|
|
|
|
if (err && typeof err === 'object' && 'message' in err) { |
|
const errorMessage = String(err.message); |
|
if (errorMessage.includes('exceeded your GPU quota') || errorMessage.includes('GPU quota')) { |
|
workflowState.error = 'GPU quota exceeded! You need to sign in with Hugging Face for free GPU time, or upgrade to Hugging Face Pro for more quota.'; |
|
} else { |
|
workflowState.error = errorMessage; |
|
} |
|
} else if (err instanceof Error) { |
|
workflowState.error = err.message; |
|
} else { |
|
workflowState.error = 'An unknown error occurred'; |
|
} |
|
} finally { |
|
workflowState.isProcessing = false; |
|
} |
|
} |
|
|
|
function handleAPIError(error: any): never { |
|
console.error('API Error:', error); |
|
|
|
|
|
if (error && typeof error === 'object' && 'message' in error) { |
|
const errorMessage = String(error.message); |
|
if (errorMessage.includes('exceeded your GPU quota') || errorMessage.includes('GPU quota')) { |
|
throw new Error('GPU quota exceeded! You need to sign in with Hugging Face for free GPU time, or upgrade to Hugging Face Pro for more quota.'); |
|
} |
|
throw new Error(errorMessage); |
|
} |
|
|
|
|
|
if (error && typeof error === 'object' && 'type' in error && error.type === 'status') { |
|
const statusError = error as any; |
|
if (statusError.message && statusError.message.includes('GPU quota')) { |
|
throw new Error('GPU quota exceeded! You need to sign in with Hugging Face for free GPU time, or upgrade to Hugging Face Pro for more quota.'); |
|
} |
|
throw new Error(statusError.message || 'API request failed'); |
|
} |
|
|
|
throw error; |
|
} |
|
|
|
async function captionImage() { |
|
workflowState.currentStep = 'captioning'; |
|
|
|
if (!joyCaptionClient || !workflowState.userImage) { |
|
throw new Error('Caption service not available or no image provided'); |
|
} |
|
|
|
try { |
|
const output = await joyCaptionClient.predict("/stream_chat", [ |
|
workflowState.userImage, |
|
"Descriptive", |
|
"long", |
|
[], |
|
"", |
|
"" |
|
]); |
|
|
|
const [, caption] = output.data; |
|
|
|
|
|
workflowState.imageCaption = caption; |
|
console.log('Detailed object description generated:', caption); |
|
} catch (error) { |
|
handleAPIError(error); |
|
} |
|
} |
|
|
|
async function generateConcept() { |
|
workflowState.currentStep = 'conceptualizing'; |
|
|
|
const activeClient = getActiveTextClient(); |
|
if (!activeClient || !workflowState.imageCaption) { |
|
throw new Error(`${currentTextClient} service not available or no image caption provided`); |
|
} |
|
|
|
const conceptPrompt = `Based on this detailed object description, create a Pokémon-style monster that transforms the object into an imaginative creature. The monster should clearly be inspired by the object's appearance but reimagined as a living monster. |
|
|
|
Object description: "${workflowState.imageCaption}" |
|
|
|
Guidelines: |
|
- Take the object's key visual elements (colors, shapes, materials) incorporating all of them into a single creature design |
|
- Add eyes (can be glowing, mechanical, multiple, etc.) positioned where they make sense |
|
- Include limbs (legs, arms, wings, tentacles) that grow from or replace parts of the object |
|
- Add a mouth, beak, or feeding apparatus if appropriate |
|
- Add creature elements like tail, fins, claws, horns, etc where fitting |
|
|
|
Format your response exactly as follows: |
|
\`\`\`md |
|
# Object Rarity |
|
{Assess how rare the object is based on real-world availability and value. Rare objects give strong monsters while common objects give weak ones. Use: common, uncommon, rare, or legendary} |
|
|
|
# Monster Name |
|
{Creative name that hints at the original object, 11 letters max} |
|
|
|
# Primary Type |
|
{Based on the object, choose the most fitting primary type: beast, bug, aquatic, flora, mineral, space, machina, structure, culture, or cuisine} |
|
|
|
# Monster Description |
|
{Detailed physical description showing how the object becomes a creature. Ensure the creature uses all the unique attributes of the object. Include colors, shapes, materials, eyes, limbs, mouth, and distinctive features. This section will be used for battle narratives and lore.} |
|
|
|
# Monster Image Prompt |
|
{Extensive visual description of the Pokémon style monster for image generation. Focus on key visual elements: body shape, colors, distinctive features, pose. Keep this optimized for AI image generation.} |
|
\`\`\``; |
|
|
|
try { |
|
const responseText = await generateText(conceptPrompt); |
|
|
|
if (!responseText || responseText.trim() === '') { |
|
throw new Error('Failed to generate monster concept'); |
|
} |
|
|
|
|
|
let cleanedResponse = responseText.trim(); |
|
|
|
|
|
if (cleanedResponse.includes('```')) { |
|
|
|
const codeBlockRegex = /```(?:md|markdown)?\s*\n([\s\S]*?)```/; |
|
const match = cleanedResponse.match(codeBlockRegex); |
|
|
|
if (match && match[1]) { |
|
cleanedResponse = match[1].trim(); |
|
console.log('Extracted content from markdown code block'); |
|
} else { |
|
|
|
const simpleMatch = cleanedResponse.match(/```([\s\S]*?)```/); |
|
if (simpleMatch && simpleMatch[1]) { |
|
cleanedResponse = simpleMatch[1].trim(); |
|
console.log('Extracted content from generic code block'); |
|
} |
|
} |
|
} |
|
|
|
|
|
if (!cleanedResponse.includes('# Object Rarity') || !cleanedResponse.includes('# Monster Name') || !cleanedResponse.includes('# Monster Image Prompt')) { |
|
console.warn('Response does not contain expected markdown structure (missing Object Rarity, Monster Name, or Monster Image Prompt)'); |
|
} |
|
|
|
workflowState.picletConcept = cleanedResponse; |
|
console.log('Monster concept generated:', cleanedResponse); |
|
} catch (error) { |
|
handleAPIError(error); |
|
} |
|
} |
|
|
|
async function generateImagePrompt() { |
|
workflowState.currentStep = 'promptCrafting'; |
|
|
|
const activeClient = getActiveTextClient(); |
|
if (!activeClient || !workflowState.picletConcept || !workflowState.imageCaption) { |
|
throw new Error(`HunyuanTurbos service not available or no concept/caption available for prompt generation`); |
|
} |
|
|
|
|
|
const imagePromptMatch = workflowState.picletConcept.match(/# Monster Image Prompt\s*\n([\s\S]*?)(?=^#|$)/m); |
|
|
|
if (imagePromptMatch && imagePromptMatch[1]) { |
|
workflowState.imagePrompt = imagePromptMatch[1].trim(); |
|
console.log('Extracted image prompt for generation:', workflowState.imagePrompt); |
|
return; |
|
} |
|
|
|
|
|
const imagePromptPrompt = `Based on this monster concept, extract ONLY the visual description for image generation: |
|
|
|
MONSTER CONCEPT: |
|
""" |
|
${workflowState.picletConcept} |
|
""" |
|
|
|
Create a concise visual description (1-3 sentences, max 100 words). Focus only on colors, shapes, materials, eyes, limbs, mouth, and distinctive features. Omit all non-visual information like abilities and backstory.`; |
|
|
|
try { |
|
const responseText = await generateText(imagePromptPrompt); |
|
|
|
if (!responseText || responseText.trim() === '') { |
|
throw new Error('Failed to generate image prompt'); |
|
} |
|
|
|
workflowState.imagePrompt = responseText.trim(); |
|
console.log('Image prompt generated:', workflowState.imagePrompt); |
|
} catch (error) { |
|
handleAPIError(error); |
|
} |
|
} |
|
|
|
async function generateMonsterImage() { |
|
workflowState.currentStep = 'generating'; |
|
|
|
if (!fluxClient || !workflowState.imagePrompt || !workflowState.picletStats) { |
|
throw new Error('Image generation service not available or no prompt/stats'); |
|
} |
|
|
|
|
|
|
|
|
|
const tier = workflowState.picletStats.tier || 'medium'; |
|
const tierDescriptions = { |
|
low: 'simple and iconic design', |
|
medium: 'detailed and well-crafted design', |
|
high: 'highly detailed and impressive design with special effects', |
|
legendary: 'highly detailed and majestic design with dramatic lighting and aura effects' |
|
}; |
|
|
|
try { |
|
const output = await fluxClient.predict("/infer", [ |
|
`${workflowState.imagePrompt}\nNow generate an Pokémon Anime image of the monster in an idle pose with a plain dark-grey background. This is a ${tier} tier monster with a ${tierDescriptions[tier as keyof typeof tierDescriptions]}. The monster should not be attacking or in motion. The full monster must be visible within the frame.`, |
|
0, |
|
true, |
|
1024, |
|
1024, |
|
4 |
|
]); |
|
|
|
const [image, usedSeed] = output.data; |
|
let url: string | undefined; |
|
|
|
if (typeof image === "string") url = image; |
|
else if (image && image.url) url = image.url; |
|
else if (image && image.path) url = image.path; |
|
|
|
if (url) { |
|
|
|
console.log('Processing image for background removal...'); |
|
try { |
|
const transparentBase64 = await removeBackground(url); |
|
workflowState.picletImage = { |
|
imageUrl: url, |
|
imageData: transparentBase64, |
|
seed: usedSeed, |
|
prompt: workflowState.imagePrompt |
|
}; |
|
console.log('Background removal completed successfully'); |
|
} catch (processError) { |
|
console.error('Failed to process image for background removal:', processError); |
|
|
|
workflowState.picletImage = { |
|
imageUrl: url, |
|
seed: usedSeed, |
|
prompt: workflowState.imagePrompt |
|
}; |
|
} |
|
} else { |
|
throw new Error('Failed to generate monster image'); |
|
} |
|
} catch (error) { |
|
handleAPIError(error); |
|
} |
|
} |
|
|
|
async function extractSimpleStats() { |
|
workflowState.currentStep = 'statsGenerating'; |
|
|
|
if (!workflowState.picletConcept) { |
|
throw new Error('No concept available for stats extraction'); |
|
} |
|
|
|
try { |
|
|
|
const monsterNameMatch = workflowState.picletConcept.match(/# Monster Name\s*\n([\s\S]*?)(?=^#|$)/m); |
|
let monsterName = monsterNameMatch ? monsterNameMatch[1].trim() : 'Unknown Monster'; |
|
|
|
|
|
if (monsterName.includes(',')) { |
|
monsterName = monsterName.split(',')[0].trim(); |
|
} |
|
if (monsterName.length > 12) { |
|
monsterName = monsterName.substring(0, 12); |
|
} |
|
monsterName = monsterName.replace(/\*/g, ''); |
|
|
|
|
|
const rarityMatch = workflowState.picletConcept.match(/# Object Rarity\s*\n([\s\S]*?)(?=^#)/m); |
|
const objectRarity = rarityMatch ? rarityMatch[1].trim().toLowerCase() : 'common'; |
|
|
|
let tier: 'low' | 'medium' | 'high' | 'legendary' = 'medium'; |
|
if (objectRarity.includes('common')) tier = 'low'; |
|
else if (objectRarity.includes('uncommon')) tier = 'medium'; |
|
else if (objectRarity.includes('rare')) tier = 'high'; |
|
else if (objectRarity.includes('legendary') || objectRarity.includes('mythical')) tier = 'legendary'; |
|
|
|
|
|
const primaryTypeMatch = workflowState.picletConcept.match(/# Primary Type\s*\n([\s\S]*?)(?=^#|$)/m); |
|
let primaryType: any = primaryTypeMatch ? primaryTypeMatch[1].trim().toLowerCase() : 'beast'; |
|
|
|
|
|
const descriptionMatch = workflowState.picletConcept.match(/# Monster Description\s*\n([\s\S]*?)(?=^#|$)/m); |
|
let description = descriptionMatch ? descriptionMatch[1].trim() : workflowState.imageCaption || 'A mysterious creature'; |
|
|
|
|
|
const stats: PicletStats = { |
|
name: monsterName, |
|
description: description, |
|
tier: tier, |
|
primaryType: primaryType |
|
}; |
|
|
|
workflowState.picletStats = stats; |
|
console.log('Simple stats extracted:', stats); |
|
|
|
} catch (error) { |
|
console.error('Failed to extract simple stats:', error); |
|
handleAPIError(error); |
|
} |
|
} |
|
|
|
async function autoSavePicletAsCaught() { |
|
if (!workflowState.picletImage || !workflowState.imageCaption || !workflowState.picletConcept || !workflowState.imagePrompt || !workflowState.picletStats) { |
|
console.error('Cannot auto-save: missing required data'); |
|
return; |
|
} |
|
|
|
try { |
|
|
|
const cleanStats = JSON.parse(JSON.stringify(workflowState.picletStats)); |
|
|
|
const picletData = { |
|
name: workflowState.picletStats.name, |
|
imageUrl: workflowState.picletImage.imageUrl, |
|
imageData: workflowState.picletImage.imageData, |
|
imageCaption: workflowState.imageCaption, |
|
concept: workflowState.picletConcept, |
|
imagePrompt: workflowState.imagePrompt, |
|
stats: cleanStats, |
|
createdAt: new Date() |
|
}; |
|
|
|
|
|
console.log('Checking piclet data for serializability:'); |
|
console.log('- name type:', typeof picletData.name); |
|
console.log('- imageUrl type:', typeof picletData.imageUrl); |
|
console.log('- imageData type:', typeof picletData.imageData, picletData.imageData ? `length: ${picletData.imageData.length}` : 'null/undefined'); |
|
console.log('- imageCaption type:', typeof picletData.imageCaption); |
|
console.log('- concept type:', typeof picletData.concept); |
|
console.log('- imagePrompt type:', typeof picletData.imagePrompt); |
|
console.log('- stats:', cleanStats); |
|
|
|
|
|
const picletInstance = await generatedDataToPicletInstance(picletData); |
|
|
|
|
|
picletInstance.caught = true; |
|
picletInstance.caughtAt = new Date(); |
|
|
|
const picletId = await savePicletInstance(picletInstance); |
|
console.log('Piclet auto-saved as caught with ID:', picletId); |
|
|
|
|
|
if (isTrainerMode && onTrainerImageCompleted && trainerImagePaths[currentImageIndex]) { |
|
onTrainerImageCompleted(trainerImagePaths[currentImageIndex], picletId); |
|
} |
|
} catch (err) { |
|
console.error('Failed to auto-save piclet:', err); |
|
console.error('Piclet data that failed to save:', { |
|
name: workflowState.picletStats?.name, |
|
hasImageUrl: !!workflowState.picletImage?.imageUrl, |
|
hasImageData: !!workflowState.picletImage?.imageData, |
|
hasStats: !!workflowState.picletStats |
|
}); |
|
|
|
|
|
if (isTrainerMode && onTrainerImageFailed && trainerImagePaths[currentImageIndex]) { |
|
const errorMessage = err instanceof Error ? err.message : 'Failed to save piclet'; |
|
onTrainerImageFailed(trainerImagePaths[currentImageIndex], errorMessage); |
|
} |
|
|
|
|
|
} |
|
} |
|
|
|
function reset() { |
|
workflowState = { |
|
currentStep: 'upload', |
|
userImage: null, |
|
imageCaption: null, |
|
picletConcept: null, |
|
picletStats: null, |
|
imagePrompt: null, |
|
picletImage: null, |
|
error: null, |
|
isProcessing: false |
|
}; |
|
} |
|
|
|
|
|
export function queueTrainerImage(imageFile: File, imagePath: string) { |
|
imageQueue.push(imageFile); |
|
trainerImagePaths.push(imagePath); |
|
|
|
|
|
if (imageQueue.length === 1 && !workflowState.isProcessing) { |
|
processCurrentImage(); |
|
} |
|
} |
|
</script> |
|
|
|
<div class="piclet-generator"> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{#if workflowState.currentStep !== 'upload'} |
|
<WorkflowProgress currentStep={workflowState.currentStep} error={workflowState.error} /> |
|
{/if} |
|
|
|
{#if workflowState.currentStep === 'upload'} |
|
<UploadStep |
|
onImageSelected={handleImageSelected} |
|
onImagesSelected={handleImagesSelected} |
|
isProcessing={workflowState.isProcessing} |
|
imageQueue={imageQueue} |
|
currentImageIndex={currentImageIndex} |
|
/> |
|
{:else if workflowState.currentStep === 'complete'} |
|
<PicletResult workflowState={workflowState} onReset={reset} /> |
|
{:else} |
|
<div class="processing-container"> |
|
<div class="spinner"></div> |
|
<p class="processing-text"> |
|
{#if workflowState.currentStep === 'captioning'} |
|
Analyzing your image... |
|
{:else if workflowState.currentStep === 'conceptualizing'} |
|
Creating Piclet concept... |
|
{:else if workflowState.currentStep === 'statsGenerating'} |
|
Generating battle stats... |
|
{:else if workflowState.currentStep === 'promptCrafting'} |
|
Creating image prompt... |
|
{:else if workflowState.currentStep === 'generating'} |
|
Generating your Piclet... |
|
{/if} |
|
</p> |
|
</div> |
|
{/if} |
|
</div> |
|
|
|
<style> |
|
.piclet-generator { |
|
width: 100%; |
|
max-width: 1200px; |
|
margin: 0 auto; |
|
padding: 2rem; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.processing-container { |
|
display: flex; |
|
flex-direction: column; |
|
align-items: center; |
|
padding: 3rem 1rem; |
|
} |
|
|
|
.spinner { |
|
width: 60px; |
|
height: 60px; |
|
border: 3px solid #f3f3f3; |
|
border-top: 3px solid #007bff; |
|
border-radius: 50%; |
|
animation: spin 1s linear infinite; |
|
margin-bottom: 2rem; |
|
} |
|
|
|
@keyframes spin { |
|
0% { transform: rotate(0deg); } |
|
100% { transform: rotate(360deg); } |
|
} |
|
|
|
.processing-text { |
|
font-size: 1.2rem; |
|
color: #333; |
|
margin-bottom: 2rem; |
|
} |
|
|
|
</style> |