Frantz103's picture
Update app.py
bfa067b
raw
history blame
2.72 kB
import gradio as gr
from fastai.vision.all import *
def is_cat(x): return x[0].isupper()
def get_labels(path):
pet_type = 'cat' if is_cat(path.name) else 'dog'
breed = RegexLabeller(r'(.+)_\d+.jpg$')(path.name)
return [pet_type, breed]
learn = load_learner('dog_cat_multi_v3.pkl')
def predict(image):
# Transform the image
pil_image = PILImage.create(image)
# Predict
preds, mask, probs = learn.predict(pil_image)
# Apply the threshold
threshold = 0.570
classes_with_probs = [(learn.dls.vocab[i], probs[i].item()) for i in range(len(mask)) if probs[i] > threshold]
confidences = {learn.dls.vocab[i]: float(probs[i].item()) for i in range(len(probs)) if probs[i] > threshold}
# Check if the prediction includes "dog" or "cat"
pet_type = None
breed = 'unknown' # Default to 'unknown' if no breed is identified
pet_prob = 0
breed_prob = 0
for class_name, prob in classes_with_probs:
if class_name == 'dog' or class_name == 'cat':
pet_type = class_name
pet_prob = prob
else:
breed = class_name
breed_prob = prob
# Check if pet_type is None (i.e., neither dog nor cat)
if pet_type is None:
return "This is not a cat, nor a dog."
result = f"This is a {pet_type}, the breed is {breed if breed else 'unknown'}.\n" \
f"The probability for it being a {pet_type} is {pet_prob * 100:.2f}%, the probability of being the breed is {breed_prob * 100:.2f}%."
return result, confidences
# Define the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs=[gr.outputs.Textbox(label="Prediction"), gr.outputs.Label(label='confidences',num_top_classes=2)],
theme=gr.themes.Soft(),
examples=["images/cazou103_Generate_a_high-resolution_image_of_a_Beagle_showcasin_609a1bae-22ac-4158-9091-dbf3220b2765.PNG",
"images/cazou103_Generate_a_high-resolution_image_of_a_Shiba_Inu_showca_998f6162-289f-450e-ab02-558c3a575f61.PNG",
"images/cazou103_Generate_a_high-resolution_image_of_a_Siamese_cat_show_68b1d78f-c304-4164-9342-4a4b56d2c4c5.PNG",
"images/cazou103_Generate_a_high-resolution_image_of_a_Persian_cat_show_7314d4c5-1d9f-47f0-97c4-330a7353d268.PNG"
],
cache_examples = True,
title="Cat and Dog Image Classifier",
description="Upload an image of a cat or a dog, and the model will identify the type and breed.",
article="This model has been trained on the Oxford Pets dataset and might not recognize all types dog and cat breeds. For best results, use clear images of pets."
)
# Launch the interface
iface.launch()