Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ import spacy
|
|
17 |
|
18 |
import re
|
19 |
|
20 |
-
|
21 |
# Initialize the processor and model for the large COCO model
|
22 |
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
23 |
model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
@@ -83,7 +82,6 @@ def extract_main_words(text):
|
|
83 |
main_words = [token.lemma_ for token in doc if token.pos_ == 'NOUN']
|
84 |
return main_words
|
85 |
|
86 |
-
|
87 |
def get_topics(text):
|
88 |
# Vectorize the text
|
89 |
vectorizer = CountVectorizer()
|
@@ -109,8 +107,6 @@ def compute_similarity(caption1, caption2):
|
|
109 |
similarity_score = cosine_sim[0, 1]
|
110 |
return similarity_score
|
111 |
|
112 |
-
|
113 |
-
# Cell 3
|
114 |
def evaluate_caption(image, caption1, caption2, unique_refined_labels):
|
115 |
# Scores initialization
|
116 |
score_caption1 = 0
|
@@ -120,7 +116,6 @@ def evaluate_caption(image, caption1, caption2, unique_refined_labels):
|
|
120 |
object_presence_score1 = 0
|
121 |
object_presence_score2 = 0
|
122 |
|
123 |
-
|
124 |
# Assume you have a function to extract main words
|
125 |
main_words_caption1 = extract_main_words(caption1)
|
126 |
main_words_caption2 = extract_main_words(caption2)
|
@@ -215,14 +210,13 @@ def process_image(image_path):
|
|
215 |
# evealuate the captions
|
216 |
better_caption = evaluate_caption(image, caption1, caption2, unique_refined_labels)
|
217 |
|
218 |
-
|
219 |
return caption1, caption2, better_caption
|
220 |
|
221 |
import gradio as gr
|
222 |
|
223 |
img_cap_ui = gr.Interface(
|
224 |
fn=process_image,
|
225 |
-
title="Image Captioning with
|
226 |
description="Caution: this is a research experiment for personal use, please review the captions before using.",
|
227 |
inputs=gr.inputs.Image(type="filepath",label="Add your image"),
|
228 |
outputs=[gr.Textbox(label="Caption from the git-coco model", show_copy_button=True),
|
@@ -234,6 +228,3 @@ img_cap_ui = gr.Interface(
|
|
234 |
)
|
235 |
|
236 |
img_cap_ui.launch()
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
17 |
|
18 |
import re
|
19 |
|
|
|
20 |
# Initialize the processor and model for the large COCO model
|
21 |
processor = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
22 |
model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
|
|
82 |
main_words = [token.lemma_ for token in doc if token.pos_ == 'NOUN']
|
83 |
return main_words
|
84 |
|
|
|
85 |
def get_topics(text):
|
86 |
# Vectorize the text
|
87 |
vectorizer = CountVectorizer()
|
|
|
107 |
similarity_score = cosine_sim[0, 1]
|
108 |
return similarity_score
|
109 |
|
|
|
|
|
110 |
def evaluate_caption(image, caption1, caption2, unique_refined_labels):
|
111 |
# Scores initialization
|
112 |
score_caption1 = 0
|
|
|
116 |
object_presence_score1 = 0
|
117 |
object_presence_score2 = 0
|
118 |
|
|
|
119 |
# Assume you have a function to extract main words
|
120 |
main_words_caption1 = extract_main_words(caption1)
|
121 |
main_words_caption2 = extract_main_words(caption2)
|
|
|
210 |
# evealuate the captions
|
211 |
better_caption = evaluate_caption(image, caption1, caption2, unique_refined_labels)
|
212 |
|
|
|
213 |
return caption1, caption2, better_caption
|
214 |
|
215 |
import gradio as gr
|
216 |
|
217 |
img_cap_ui = gr.Interface(
|
218 |
fn=process_image,
|
219 |
+
title="Image Captioning with Automatic Evaluation",
|
220 |
description="Caution: this is a research experiment for personal use, please review the captions before using.",
|
221 |
inputs=gr.inputs.Image(type="filepath",label="Add your image"),
|
222 |
outputs=[gr.Textbox(label="Caption from the git-coco model", show_copy_button=True),
|
|
|
228 |
)
|
229 |
|
230 |
img_cap_ui.launch()
|
|
|
|
|
|