TARS / app.py
FranklinWillemen's picture
comment out transcript
8cdc72a
raw
history blame
2.4 kB
import gradio as gr
import openai
import config
import os
import azure.cognitiveservices.speech as speechsdk
openai.api_key = os.environ['OPEN_AI_KEY']
speech_config = speechsdk.SpeechConfig(subscription=os.environ['AZURE_SPEECH_KEY'], region="westeurope")
#audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True)
speech_config.speech_synthesis_voice_name = "nl-NL-ColetteNeural"
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=None)
context = [{"role": "system", "content": 'You are a clever and helpfull conversationalist. \
Respond to all input in 25 words or less. \
Do not mention that you are an AI or service of any kind.'}]
def transcribe(model: str, audio: str):
audio_file = open(audio, "rb")
transcript = openai.Audio.transcribe(model, audio_file)
return transcript
def gen_response(model: str, context: list):
response = openai.ChatCompletion.create(model=model, messages=context)
return response["choices"][0]["message"]
def gen_voice(response, response_filename):
reponse_audio = speech_synthesizer.speak_text_async(response['content']).get()
stream = speechsdk.AudioDataStream(reponse_audio)
stream.save_to_wav_file(response_filename)
def conversation(audio:str):
transcript = transcribe("whisper-1", audio)
context.append({"role": "user", "content": transcript['text']})
response = gen_response("gpt-3.5-turbo", context)
context.append(response)
gen_voice(response, "voice.wav")
chat_transcript = ""
for message in context:
if message['role'] != 'system':
chat_transcript += message['role'] + ": " + message['content'] + "\n\n"
return "voice.wav"
# set a custom theme
theme = gr.themes.Default().set(
body_background_fill="#000000",
)
with gr.Blocks(theme=theme) as ui:
# advisor image input and microphone input
#advisor = gr.Image(value=config.TARS_LOGO).style(width=config.LOGO_IMAGE_WIDTH, height=config.LOGO_IMAGE_HEIGHT)
audio_input = gr.Audio(source="microphone", type="filepath")
audio_output = gr.Audio()
# text transcript output and audio
# text_output = gr.Textbox(label="Transcript")
btn = gr.Button("Run")
btn.click(fn=conversation, inputs=audio_input, outputs=[audio_output])
ui.launch()