Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
from typing import Dict, List, Tuple, Iterable, Optional, Sequence, Union, TYPE_CHECKING | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from torch.distributions import Categorical | |
from .audio import CHUNK_LENGTH | |
from .tokenizer import Tokenizer, get_tokenizer | |
from .utils import compression_ratio | |
if TYPE_CHECKING: | |
from .model import Whisper | |
def detect_language(model: "Whisper", mel: Tensor, tokenizer: Tokenizer = None) -> Tuple[Tensor, List[dict]]: | |
""" | |
Detect the spoken language in the audio, and return them as list of strings, along with the ids | |
of the most probable language tokens and the probability distribution over all language tokens. | |
This is performed outside the main decode loop in order to not interfere with kv-caching. | |
Returns | |
------- | |
language_tokens : Tensor, shape = (n_audio,) | |
ids of the most probable language tokens, which appears after the startoftranscript token. | |
language_probs : List[Dict[str, float]], length = n_audio | |
list of dictionaries containing the probability distribution over all languages. | |
""" | |
if tokenizer is None: | |
tokenizer = get_tokenizer(model.is_multilingual) | |
if tokenizer.language is None or tokenizer.language_token not in tokenizer.sot_sequence: | |
raise ValueError(f"This model doesn't have language tokens so it can't perform lang id") | |
single = mel.ndim == 2 | |
if single: | |
mel = mel.unsqueeze(0) | |
# skip encoder forward pass if already-encoded audio features were given | |
if mel.shape[-2:] != (model.dims.n_audio_ctx, model.dims.n_audio_state): | |
mel = model.encoder(mel) | |
# forward pass using a single token, startoftranscript | |
n_audio = mel.shape[0] | |
x = torch.tensor([[tokenizer.sot]] * n_audio).to(mel.device) # [n_audio, 1] | |
logits = model.logits(x, mel)[:, 0] | |
# collect detected languages; suppress all non-language tokens | |
mask = torch.ones(logits.shape[-1], dtype=torch.bool) | |
mask[list(tokenizer.all_language_tokens)] = False | |
logits[:, mask] = -np.inf | |
language_tokens = logits.argmax(dim=-1) | |
language_token_probs = logits.softmax(dim=-1).cpu() | |
language_probs = [ | |
{ | |
c: language_token_probs[i, j].item() | |
for j, c in zip(tokenizer.all_language_tokens, tokenizer.all_language_codes) | |
} | |
for i in range(n_audio) | |
] | |
if single: | |
language_tokens = language_tokens[0] | |
language_probs = language_probs[0] | |
return language_tokens, language_probs | |
class DecodingOptions: | |
task: str = "transcribe" # whether to perform X->X "transcribe" or X->English "translate" | |
language: Optional[str] = None # language that the audio is in; uses detected language if None | |
# sampling-related options | |
temperature: float = 0.0 | |
sample_len: Optional[int] = None # maximum number of tokens to sample | |
best_of: Optional[int] = None # number of independent samples to collect, when t > 0 | |
beam_size: Optional[int] = None # number of beams in beam search, when t == 0 | |
patience: Optional[float] = None # patience in beam search (https://arxiv.org/abs/2204.05424) | |
# options for ranking generations (either beams or best-of-N samples) | |
length_penalty: Optional[float] = None # "alpha" in Google NMT, None defaults to length norm | |
# prompt, prefix, and token suppression | |
prompt: Optional[Union[str, List[int]]] = None # text or tokens for the previous context | |
prefix: Optional[Union[str, List[int]]] = None # text or tokens to prefix the current context | |
suppress_blank: bool = True # this will suppress blank outputs | |
# list of tokens ids (or comma-separated token ids) to suppress | |
# "-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()` | |
suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1" | |
# timestamp sampling options | |
without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only | |
max_initial_timestamp: Optional[float] = 1.0 # the initial timestamp cannot be later than this | |
# implementation details | |
fp16: bool = True # use fp16 for most of the calculation | |
class DecodingResult: | |
audio_features: Tensor | |
language: str | |
language_probs: Optional[Dict[str, float]] = None | |
tokens: List[int] = field(default_factory=list) | |
text: str = "" | |
avg_logprob: float = np.nan | |
no_speech_prob: float = np.nan | |
temperature: float = np.nan | |
compression_ratio: float = np.nan | |
class Inference: | |
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor: | |
"""Perform a forward pass on the decoder and return per-token logits""" | |
raise NotImplementedError | |
def rearrange_kv_cache(self, source_indices) -> None: | |
"""Update the key-value cache according to the updated beams""" | |
raise NotImplementedError | |
def cleanup_caching(self) -> None: | |
"""Clean up any resources or hooks after decoding is finished""" | |
pass | |
class PyTorchInference(Inference): | |
def __init__(self, model: "Whisper", initial_token_length: int): | |
self.model: "Whisper" = model | |
self.initial_token_length = initial_token_length | |
self.kv_cache = {} | |
self.hooks = [] | |
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor: | |
if not self.kv_cache: | |
self.kv_cache, self.hooks = self.model.install_kv_cache_hooks() | |
if tokens.shape[-1] > self.initial_token_length: | |
# only need to use the last token except in the first forward pass | |
tokens = tokens[:, -1:] | |
return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache) | |
def cleanup_caching(self): | |
for hook in self.hooks: | |
hook.remove() | |
self.kv_cache = {} | |
self.hooks = [] | |
def rearrange_kv_cache(self, source_indices): | |
for module, tensor in self.kv_cache.items(): | |
# update the key/value cache to contain the selected sequences | |
self.kv_cache[module] = tensor[source_indices].detach() | |
class SequenceRanker: | |
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]) -> List[int]: | |
""" | |
Given a list of groups of samples and their cumulative log probabilities, | |
return the indices of the samples in each group to select as the final result | |
""" | |
raise NotImplementedError | |
class MaximumLikelihoodRanker(SequenceRanker): | |
""" | |
Select the sample with the highest log probabilities, penalized using either | |
a simple length normalization or Google NMT paper's length penalty | |
""" | |
def __init__(self, length_penalty: Optional[float]): | |
self.length_penalty = length_penalty | |
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]): | |
def scores(logprobs, lengths): | |
result = [] | |
for logprob, length in zip(logprobs, lengths): | |
if self.length_penalty is None: | |
penalty = length | |
else: | |
# from the Google NMT paper | |
penalty = ((5 + length) / 6) ** self.length_penalty | |
result.append(logprob / penalty) | |
return result | |
# get the sequence with the highest score | |
lengths = [[len(t) for t in s] for s in tokens] | |
return [np.argmax(scores(p, l)) for p, l in zip(sum_logprobs, lengths)] | |
class TokenDecoder: | |
def reset(self): | |
"""Initialize any stateful variables for decoding a new sequence""" | |
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]: | |
"""Specify how to select the next token, based on the current trace and logits | |
Parameters | |
---------- | |
tokens : Tensor, shape = (n_batch, current_sequence_length) | |
all tokens in the context so far, including the prefix and sot_sequence tokens | |
logits : Tensor, shape = (n_batch, vocab_size) | |
per-token logits of the probability distribution at the current step | |
sum_logprobs : Tensor, shape = (n_batch) | |
cumulative log probabilities for each sequence | |
Returns | |
------- | |
tokens : Tensor, shape = (n_batch, current_sequence_length + 1) | |
the tokens, appended with the selected next token | |
completed : bool | |
True if all sequences has reached the end of text | |
""" | |
raise NotImplementedError | |
def finalize( | |
self, tokens: Tensor, sum_logprobs: Tensor | |
) -> Tuple[Sequence[Sequence[Tensor]], List[List[float]]]: | |
"""Finalize search and return the final candidate sequences | |
Parameters | |
---------- | |
tokens : Tensor, shape = (n_audio, n_group, current_sequence_length) | |
all tokens in the context so far, including the prefix and sot_sequence | |
sum_logprobs : Tensor, shape = (n_audio, n_group) | |
cumulative log probabilities for each sequence | |
Returns | |
------- | |
tokens : Sequence[Sequence[Tensor]], length = n_audio | |
sequence of Tensors containing candidate token sequences, for each audio input | |
sum_logprobs : List[List[float]], length = n_audio | |
sequence of cumulative log probabilities corresponding to the above | |
""" | |
raise NotImplementedError | |
class GreedyDecoder(TokenDecoder): | |
def __init__(self, temperature: float, eot: int): | |
self.temperature = temperature | |
self.eot = eot | |
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]: | |
temperature = self.temperature | |
if temperature == 0: | |
next_tokens = logits.argmax(dim=-1) | |
else: | |
next_tokens = Categorical(logits=logits / temperature).sample() | |
logprobs = F.log_softmax(logits.float(), dim=-1) | |
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), next_tokens] | |
sum_logprobs += current_logprobs * (tokens[:, -1] != self.eot) | |
next_tokens[tokens[:, -1] == self.eot] = self.eot | |
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1) | |
completed = (tokens[:, -1] == self.eot).all() | |
return tokens, completed | |
def finalize(self, tokens: Tensor, sum_logprobs: Tensor): | |
# make sure each sequence has at least one EOT token at the end | |
tokens = F.pad(tokens, (0, 1), value=self.eot) | |
return tokens, sum_logprobs.tolist() | |
class BeamSearchDecoder(TokenDecoder): | |
def __init__(self, beam_size: int, eot: int, inference: Inference, patience: Optional[float] = None): | |
self.beam_size = beam_size | |
self.eot = eot | |
self.inference = inference | |
self.patience = patience or 1.0 | |
self.max_candidates: int = round(beam_size * self.patience) | |
self.finished_sequences = None | |
assert self.max_candidates > 0, f"Invalid beam size ({beam_size}) or patience ({patience})" | |
def reset(self): | |
self.finished_sequences = None | |
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]: | |
if tokens.shape[0] % self.beam_size != 0: | |
raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0") | |
n_audio = tokens.shape[0] // self.beam_size | |
if self.finished_sequences is None: # for the first update | |
self.finished_sequences = [{} for _ in range(n_audio)] | |
logprobs = F.log_softmax(logits.float(), dim=-1) | |
next_tokens, source_indices, finished_sequences = [], [], [] | |
for i in range(n_audio): | |
scores, sources, finished = {}, {}, {} | |
# STEP 1: calculate the cumulative log probabilities for possible candidates | |
for j in range(self.beam_size): | |
idx = i * self.beam_size + j | |
prefix = tokens[idx].tolist() | |
for logprob, token in zip(*logprobs[idx].topk(self.beam_size + 1)): | |
new_logprob = (sum_logprobs[idx] + logprob).item() | |
sequence = tuple(prefix + [token.item()]) | |
scores[sequence] = new_logprob | |
sources[sequence] = idx | |
# STEP 2: rank the candidates and keep the top beam_size sequences for each audio | |
saved = 0 | |
for sequence in sorted(scores, key=scores.get, reverse=True): | |
if sequence[-1] == self.eot: | |
finished[sequence] = scores[sequence] | |
else: | |
sum_logprobs[len(next_tokens)] = scores[sequence] | |
next_tokens.append(sequence) | |
source_indices.append(sources[sequence]) | |
saved += 1 | |
if saved == self.beam_size: | |
break | |
finished_sequences.append(finished) | |
tokens = torch.tensor(next_tokens, device=tokens.device) | |
self.inference.rearrange_kv_cache(source_indices) | |
# add newly finished sequences to self.finished_sequences | |
assert len(self.finished_sequences) == len(finished_sequences) | |
for previously_finished, newly_finished in zip(self.finished_sequences, finished_sequences): | |
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True): | |
if len(previously_finished) >= self.max_candidates: | |
break # the candidate list is full | |
previously_finished[seq] = newly_finished[seq] | |
# mark as completed if all audio has enough number of samples | |
completed = all( | |
len(sequences) >= self.max_candidates for sequences in self.finished_sequences | |
) | |
return tokens, completed | |
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor): | |
# collect all finished sequences, including patience, and add unfinished ones if not enough | |
sum_logprobs = sum_logprobs.cpu() | |
for i, sequences in enumerate(self.finished_sequences): | |
if len(sequences) < self.beam_size: # when not enough sequences are finished | |
for j in list(np.argsort(sum_logprobs[i]))[::-1]: | |
sequence = preceding_tokens[i, j].tolist() + [self.eot] | |
sequences[tuple(sequence)] = sum_logprobs[i][j].item() | |
if len(sequences) >= self.beam_size: | |
break | |
tokens: List[List[Tensor]] = [ | |
[torch.tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences | |
] | |
sum_logprobs: List[List[float]] = [ | |
list(sequences.values()) for sequences in self.finished_sequences | |
] | |
return tokens, sum_logprobs | |
class LogitFilter: | |
def apply(self, logits: Tensor, tokens: Tensor) -> None: | |
"""Apply any filtering or masking to logits in-place | |
Parameters | |
---------- | |
logits : Tensor, shape = (n_batch, vocab_size) | |
per-token logits of the probability distribution at the current step | |
tokens : Tensor, shape = (n_batch, current_sequence_length) | |
all tokens in the context so far, including the prefix and sot_sequence tokens | |
""" | |
raise NotImplementedError | |
class SuppressBlank(LogitFilter): | |
def __init__(self, tokenizer: Tokenizer, sample_begin: int): | |
self.tokenizer = tokenizer | |
self.sample_begin = sample_begin | |
def apply(self, logits: Tensor, tokens: Tensor): | |
if tokens.shape[1] == self.sample_begin: | |
logits[:, self.tokenizer.encode(" ") + [self.tokenizer.eot]] = -np.inf | |
class SuppressTokens(LogitFilter): | |
def __init__(self, suppress_tokens: Sequence[int]): | |
self.suppress_tokens = list(suppress_tokens) | |
def apply(self, logits: Tensor, tokens: Tensor): | |
logits[:, self.suppress_tokens] = -np.inf | |
class ApplyTimestampRules(LogitFilter): | |
def __init__( | |
self, tokenizer: Tokenizer, sample_begin: int, max_initial_timestamp_index: Optional[int] | |
): | |
self.tokenizer = tokenizer | |
self.sample_begin = sample_begin | |
self.max_initial_timestamp_index = max_initial_timestamp_index | |
def apply(self, logits: Tensor, tokens: Tensor): | |
# suppress <|notimestamps|> which is handled by without_timestamps | |
if self.tokenizer.no_timestamps is not None: | |
logits[:, self.tokenizer.no_timestamps] = -np.inf | |
# timestamps have to appear in pairs, except directly before EOT; mask logits accordingly | |
for k in range(tokens.shape[0]): | |
seq = [t for t in tokens[k, self.sample_begin :].tolist()] | |
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.tokenizer.timestamp_begin | |
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.tokenizer.timestamp_begin | |
if last_was_timestamp: | |
if penultimate_was_timestamp: # has to be non-timestamp | |
logits[k, self.tokenizer.timestamp_begin :] = -np.inf | |
else: # cannot be normal text tokens | |
logits[k, : self.tokenizer.eot] = -np.inf | |
if tokens.shape[1] == self.sample_begin: | |
# suppress generating non-timestamp tokens at the beginning | |
logits[:, : self.tokenizer.timestamp_begin] = -np.inf | |
# apply the `max_initial_timestamp` option | |
if self.max_initial_timestamp_index is not None: | |
last_allowed = self.tokenizer.timestamp_begin + self.max_initial_timestamp_index | |
logits[:, last_allowed + 1 :] = -np.inf | |
# if sum of probability over timestamps is above any other token, sample timestamp | |
logprobs = F.log_softmax(logits.float(), dim=-1) | |
for k in range(tokens.shape[0]): | |
timestamp_logprob = logprobs[k, self.tokenizer.timestamp_begin :].logsumexp(dim=-1) | |
max_text_token_logprob = logprobs[k, : self.tokenizer.timestamp_begin].max() | |
if timestamp_logprob > max_text_token_logprob: | |
logits[k, : self.tokenizer.timestamp_begin] = -np.inf | |
class DecodingTask: | |
inference: Inference | |
sequence_ranker: SequenceRanker | |
decoder: TokenDecoder | |
logit_filters: List[LogitFilter] | |
def __init__(self, model: "Whisper", options: DecodingOptions): | |
self.model = model | |
language = options.language or "en" | |
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=options.task) | |
self.tokenizer: Tokenizer = tokenizer | |
self.options: DecodingOptions = self._verify_options(options) | |
self.n_group: int = options.beam_size or options.best_of or 1 | |
self.n_ctx: int = model.dims.n_text_ctx | |
self.sample_len: int = options.sample_len or model.dims.n_text_ctx // 2 | |
self.sot_sequence: Tuple[int] = tokenizer.sot_sequence | |
if self.options.without_timestamps: | |
self.sot_sequence = tokenizer.sot_sequence_including_notimestamps | |
self.initial_tokens: Tuple[int] = self._get_initial_tokens() | |
self.sample_begin: int = len(self.initial_tokens) | |
self.sot_index: int = self.initial_tokens.index(tokenizer.sot) | |
# inference: implements the forward pass through the decoder, including kv caching | |
self.inference = PyTorchInference(model, len(self.initial_tokens)) | |
# sequence ranker: implements how to rank a group of sampled sequences | |
self.sequence_ranker = MaximumLikelihoodRanker(options.length_penalty) | |
# decoder: implements how to select the next tokens, given the autoregressive distribution | |
if options.beam_size is not None: | |
self.decoder = BeamSearchDecoder( | |
options.beam_size, tokenizer.eot, self.inference, options.patience | |
) | |
else: | |
self.decoder = GreedyDecoder(options.temperature, tokenizer.eot) | |
# logit filters: applies various rules to suppress or penalize certain tokens | |
self.logit_filters = [] | |
if self.options.suppress_blank: | |
self.logit_filters.append(SuppressBlank(self.tokenizer, self.sample_begin)) | |
if self.options.suppress_tokens: | |
self.logit_filters.append(SuppressTokens(self._get_suppress_tokens())) | |
if not options.without_timestamps: | |
precision = CHUNK_LENGTH / model.dims.n_audio_ctx # usually 0.02 seconds | |
max_initial_timestamp_index = None | |
if options.max_initial_timestamp: | |
max_initial_timestamp_index = round(self.options.max_initial_timestamp / precision) | |
self.logit_filters.append( | |
ApplyTimestampRules(tokenizer, self.sample_begin, max_initial_timestamp_index) | |
) | |
def _verify_options(self, options: DecodingOptions) -> DecodingOptions: | |
if options.beam_size is not None and options.best_of is not None: | |
raise ValueError("beam_size and best_of can't be given together") | |
if options.temperature == 0: | |
if options.best_of is not None: | |
raise ValueError("best_of with greedy sampling (T=0) is not compatible") | |
if options.patience is not None and options.beam_size is None: | |
raise ValueError("patience requires beam_size to be given") | |
if options.length_penalty is not None and not (0 <= options.length_penalty <= 1): | |
raise ValueError("length_penalty (alpha) should be a value between 0 and 1") | |
return options | |
def _get_initial_tokens(self) -> Tuple[int]: | |
tokens = list(self.sot_sequence) | |
prefix = self.options.prefix | |
prompt = self.options.prompt | |
if prefix: | |
prefix_tokens = ( | |
self.tokenizer.encode(" " + prefix.strip()) if isinstance(prefix, str) else prefix | |
) | |
if self.sample_len is not None: | |
max_prefix_len = self.n_ctx // 2 - self.sample_len | |
prefix_tokens = prefix_tokens[-max_prefix_len:] | |
tokens = tokens + prefix_tokens | |
if prompt: | |
prompt_tokens = ( | |
self.tokenizer.encode(" " + prompt.strip()) if isinstance(prompt, str) else prompt | |
) | |
tokens = [self.tokenizer.sot_prev] + prompt_tokens[-(self.n_ctx // 2 - 1) :] + tokens | |
return tuple(tokens) | |
def _get_suppress_tokens(self) -> Tuple[int]: | |
suppress_tokens = self.options.suppress_tokens | |
if isinstance(suppress_tokens, str): | |
suppress_tokens = [int(t) for t in suppress_tokens.split(",")] | |
if -1 in suppress_tokens: | |
suppress_tokens = [t for t in suppress_tokens if t >= 0] | |
suppress_tokens.extend(self.tokenizer.non_speech_tokens) | |
elif suppress_tokens is None or len(suppress_tokens) == 0: | |
suppress_tokens = [] # interpret empty string as an empty list | |
else: | |
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list" | |
suppress_tokens.extend( | |
[self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm] | |
) | |
if self.tokenizer.no_speech is not None: | |
# no-speech probability is collected separately | |
suppress_tokens.append(self.tokenizer.no_speech) | |
return tuple(sorted(set(suppress_tokens))) | |
def _get_audio_features(self, mel: Tensor): | |
if self.options.fp16: | |
mel = mel.half() | |
if mel.shape[-2:] == (self.model.dims.n_audio_ctx, self.model.dims.n_audio_state): | |
# encoded audio features are given; skip audio encoding | |
print("encoded audio features are given; skip audio encoding") | |
audio_features = mel | |
else: | |
print(mel.shape) | |
print("===============================") | |
audio_features = self.model.encoder(mel) | |
if audio_features.dtype != (torch.float16 if self.options.fp16 else torch.float32): | |
return TypeError(f"audio_features has an incorrect dtype: {audio_features.dtype}") | |
return audio_features | |
def _detect_language(self, audio_features: Tensor, tokens: Tensor): | |
languages = [self.options.language] * audio_features.shape[0] | |
lang_probs = None | |
if self.options.language is None or self.options.task == "lang_id": | |
lang_tokens, lang_probs = self.model.detect_language(audio_features, self.tokenizer) | |
languages = [max(probs, key=probs.get) for probs in lang_probs] | |
if self.options.language is None: | |
tokens[:, self.sot_index + 1] = lang_tokens # write language tokens | |
return languages, lang_probs | |
def _main_loop(self, audio_features: Tensor, tokens: Tensor): | |
assert audio_features.shape[0] == tokens.shape[0] | |
n_batch = tokens.shape[0] | |
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device) | |
no_speech_probs = [np.nan] * n_batch | |
try: | |
for i in range(self.sample_len): | |
logits = self.inference.logits(tokens, audio_features) | |
if i == 0 and self.tokenizer.no_speech is not None: # save no_speech_probs | |
probs_at_sot = logits[:, self.sot_index].float().softmax(dim=-1) | |
no_speech_probs = probs_at_sot[:, self.tokenizer.no_speech].tolist() | |
# now we need to consider the logits at the last token only | |
logits = logits[:, -1] | |
# apply the logit filters, e.g. for suppressing or applying penalty to | |
for logit_filter in self.logit_filters: | |
logit_filter.apply(logits, tokens) | |
# expand the tokens tensor with the selected next tokens | |
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs) | |
if completed or tokens.shape[-1] > self.n_ctx: | |
break | |
finally: | |
self.inference.cleanup_caching() | |
return tokens, sum_logprobs, no_speech_probs | |
def run(self, mel: Tensor) -> List[DecodingResult]: | |
self.decoder.reset() | |
tokenizer: Tokenizer = self.tokenizer | |
n_audio: int = mel.shape[0] | |
audio_features: Tensor = self._get_audio_features(mel) # encoder forward pass | |
tokens: Tensor = torch.tensor([self.initial_tokens]).repeat(n_audio, 1) | |
# detect language if requested, overwriting the language token | |
languages, language_probs = self._detect_language(audio_features, tokens) | |
if self.options.task == "lang_id": | |
return [ | |
DecodingResult(audio_features=features, language=language, language_probs=probs) | |
for features, language, probs in zip(audio_features, languages, language_probs) | |
] | |
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling | |
audio_features = audio_features.repeat_interleave(self.n_group, dim=0) | |
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device) | |
# call the main sampling loop | |
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens) | |
# reshape the tensors to have (n_audio, n_group) as the first two dimensions | |
audio_features = audio_features[:: self.n_group] | |
no_speech_probs = no_speech_probs[:: self.n_group] | |
assert audio_features.shape[0] == len(no_speech_probs) == n_audio | |
tokens = tokens.reshape(n_audio, self.n_group, -1) | |
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group) | |
# get the final candidates for each group, and slice between the first sampled token and EOT | |
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs) | |
tokens: List[List[Tensor]] = [ | |
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens | |
] | |
# select the top-ranked sample in each group | |
selected = self.sequence_ranker.rank(tokens, sum_logprobs) | |
tokens: List[List[int]] = [t[i].tolist() for i, t in zip(selected, tokens)] | |
texts: List[str] = [tokenizer.decode(t).strip() for t in tokens] | |
sum_logprobs: List[float] = [lp[i] for i, lp in zip(selected, sum_logprobs)] | |
avg_logprobs: List[float] = [lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)] | |
fields = (texts, languages, tokens, audio_features, avg_logprobs, no_speech_probs) | |
if len(set(map(len, fields))) != 1: | |
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}") | |
return [ | |
DecodingResult( | |
audio_features=features, | |
language=language, | |
tokens=tokens, | |
text=text, | |
avg_logprob=avg_logprob, | |
no_speech_prob=no_speech_prob, | |
temperature=self.options.temperature, | |
compression_ratio=compression_ratio(text), | |
) | |
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(*fields) | |
] | |
def decode(model: "Whisper", mel: Tensor, options: DecodingOptions = DecodingOptions()) -> Union[DecodingResult, List[DecodingResult]]: | |
""" | |
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s). | |
Parameters | |
---------- | |
model: Whisper | |
the Whisper model instance | |
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000) | |
A tensor containing the Mel spectrogram(s) | |
options: DecodingOptions | |
A dataclass that contains all necessary options for decoding 30-second segments | |
Returns | |
------- | |
result: Union[DecodingResult, List[DecodingResult]] | |
The result(s) of decoding contained in `DecodingResult` dataclass instance(s) | |
""" | |
single = mel.ndim == 2 | |
if single: | |
mel = mel.unsqueeze(0) | |
result = DecodingTask(model, options).run(mel) | |
if single: | |
result = result[0] | |
return result | |