Spaces:
Runtime error
Runtime error
import math | |
from math import sqrt | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import Mish | |
class Conv1d(torch.nn.Conv1d): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
nn.init.kaiming_normal_(self.weight) | |
class SinusoidalPosEmb(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x): | |
device = x.device | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=device) * -emb) | |
emb = x[:, None] * emb[None, :] | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class ResidualBlock(nn.Module): | |
def __init__(self, encoder_hidden, residual_channels, dilation): | |
super().__init__() | |
self.residual_channels = residual_channels | |
self.dilated_conv = nn.Conv1d( | |
residual_channels, | |
2 * residual_channels, | |
kernel_size=3, | |
padding=dilation, | |
dilation=dilation | |
) | |
self.diffusion_projection = nn.Linear(residual_channels, residual_channels) | |
self.conditioner_projection = nn.Conv1d(encoder_hidden, 2 * residual_channels, 1) | |
self.output_projection = nn.Conv1d(residual_channels, 2 * residual_channels, 1) | |
def forward(self, x, conditioner, diffusion_step): | |
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1) | |
conditioner = self.conditioner_projection(conditioner) | |
y = x + diffusion_step | |
y = self.dilated_conv(y) + conditioner | |
# Using torch.split instead of torch.chunk to avoid using onnx::Slice | |
gate, filter = torch.split(y, [self.residual_channels, self.residual_channels], dim=1) | |
y = torch.sigmoid(gate) * torch.tanh(filter) | |
y = self.output_projection(y) | |
# Using torch.split instead of torch.chunk to avoid using onnx::Slice | |
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1) | |
return (x + residual) / math.sqrt(2.0), skip | |
class WaveNet(nn.Module): | |
def __init__(self, in_dims=128, n_layers=20, n_chans=384, n_hidden=256): | |
super().__init__() | |
self.input_projection = Conv1d(in_dims, n_chans, 1) | |
self.diffusion_embedding = SinusoidalPosEmb(n_chans) | |
self.mlp = nn.Sequential( | |
nn.Linear(n_chans, n_chans * 4), | |
Mish(), | |
nn.Linear(n_chans * 4, n_chans) | |
) | |
self.residual_layers = nn.ModuleList([ | |
ResidualBlock( | |
encoder_hidden=n_hidden, | |
residual_channels=n_chans, | |
dilation=1 | |
) | |
for i in range(n_layers) | |
]) | |
self.skip_projection = Conv1d(n_chans, n_chans, 1) | |
self.output_projection = Conv1d(n_chans, in_dims, 1) | |
nn.init.zeros_(self.output_projection.weight) | |
def forward(self, spec, diffusion_step, cond): | |
""" | |
:param spec: [B, 1, M, T] | |
:param diffusion_step: [B, 1] | |
:param cond: [B, M, T] | |
:return: | |
""" | |
x = spec.squeeze(1) | |
x = self.input_projection(x) # [B, residual_channel, T] | |
x = F.relu(x) | |
diffusion_step = self.diffusion_embedding(diffusion_step) | |
diffusion_step = self.mlp(diffusion_step) | |
skip = [] | |
for layer in self.residual_layers: | |
x, skip_connection = layer(x, cond, diffusion_step) | |
skip.append(skip_connection) | |
x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers)) | |
x = self.skip_projection(x) | |
x = F.relu(x) | |
x = self.output_projection(x) # [B, mel_bins, T] | |
return x[:, None, :, :] | |