FrankZxShen's picture
init
ce252ec
raw
history blame
6.7 kB
import librosa
import torch
import torchaudio
class Slicer:
def __init__(self,
sr: int,
threshold: float = -40.,
min_length: int = 5000,
min_interval: int = 300,
hop_size: int = 20,
max_sil_kept: int = 5000):
if not min_length >= min_interval >= hop_size:
raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
if not max_sil_kept >= hop_size:
raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
else:
return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
# @timeit
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = librosa.to_mono(waveform)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start: i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
pos += i - self.max_sil_kept
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if silence_start is not None and total_frames - silence_start >= self.min_interval:
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
if len(sil_tags) == 0:
return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
else:
chunks = []
# 第一段静音并非从头开始,补上有声片段
if sil_tags[0][0]:
chunks.append(
{"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
for i in range(0, len(sil_tags)):
# 标识有声片段(跳过第一段)
if i:
chunks.append({"slice": False,
"split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
# 标识所有静音片段
chunks.append({"slice": True,
"split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
# 最后一段静音并非结尾,补上结尾片段
if sil_tags[-1][1] * self.hop_size < len(waveform):
chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
chunk_dict = {}
for i in range(len(chunks)):
chunk_dict[str(i)] = chunks[i]
return chunk_dict
def cut(audio_path, db_thresh=-30, min_len=5000):
audio, sr = librosa.load(audio_path, sr=None)
slicer = Slicer(
sr=sr,
threshold=db_thresh,
min_length=min_len
)
chunks = slicer.slice(audio)
return chunks
def chunks2audio(audio_path, chunks):
chunks = dict(chunks)
audio, sr = torchaudio.load(audio_path)
if len(audio.shape) == 2 and audio.shape[1] >= 2:
audio = torch.mean(audio, dim=0).unsqueeze(0)
audio = audio.cpu().numpy()[0]
result = []
for k, v in chunks.items():
tag = v["split_time"].split(",")
if tag[0] != tag[1]:
result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
return result, sr