Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import re | |
import sys | |
import argparse | |
import logging | |
import json | |
import subprocess | |
import warnings | |
import random | |
import functools | |
import librosa | |
import numpy as np | |
from scipy.io.wavfile import read | |
import torch | |
from torch.nn import functional as F | |
from modules.commons import sequence_mask | |
MATPLOTLIB_FLAG = False | |
logging.basicConfig(stream=sys.stdout, level=logging.WARN) | |
logger = logging | |
f0_bin = 256 | |
f0_max = 1100.0 | |
f0_min = 50.0 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
def normalize_f0(f0, x_mask, uv, random_scale=True): | |
# calculate means based on x_mask | |
uv_sum = torch.sum(uv, dim=1, keepdim=True) | |
uv_sum[uv_sum == 0] = 9999 | |
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum | |
if random_scale: | |
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device) | |
else: | |
factor = torch.ones(f0.shape[0], 1).to(f0.device) | |
# normalize f0 based on means and factor | |
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) | |
if torch.isnan(f0_norm).any(): | |
exit(0) | |
return f0_norm * x_mask | |
def plot_data_to_numpy(x, y): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger('matplotlib') | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
plt.plot(x) | |
plt.plot(y) | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def f0_to_coarse(f0): | |
is_torch = isinstance(f0, torch.Tensor) | |
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 | |
f0_coarse = (f0_mel + 0.5).int() if is_torch else np.rint(f0_mel).astype(np.int) | |
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) | |
return f0_coarse | |
def get_content(cmodel, y): | |
with torch.no_grad(): | |
c = cmodel.extract_features(y.squeeze(1))[0] | |
c = c.transpose(1, 2) | |
return c | |
def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs): | |
if f0_predictor == "pm": | |
from modules.F0Predictor.PMF0Predictor import PMF0Predictor | |
f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate) | |
elif f0_predictor == "crepe": | |
from modules.F0Predictor.CrepeF0Predictor import CrepeF0Predictor | |
f0_predictor_object = CrepeF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,device=kargs["device"],threshold=kargs["threshold"]) | |
elif f0_predictor == "harvest": | |
from modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor | |
f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate) | |
elif f0_predictor == "dio": | |
from modules.F0Predictor.DioF0Predictor import DioF0Predictor | |
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate) | |
else: | |
raise Exception("Unknown f0 predictor") | |
return f0_predictor_object | |
def get_speech_encoder(speech_encoder,device=None,**kargs): | |
if speech_encoder == "vec768l12": | |
from vencoder.ContentVec768L12 import ContentVec768L12 | |
speech_encoder_object = ContentVec768L12(device = device) | |
elif speech_encoder == "vec256l9": | |
from vencoder.ContentVec256L9 import ContentVec256L9 | |
speech_encoder_object = ContentVec256L9(device = device) | |
elif speech_encoder == "vec256l9-onnx": | |
from vencoder.ContentVec256L9_Onnx import ContentVec256L9_Onnx | |
speech_encoder_object = ContentVec256L9(device = device) | |
elif speech_encoder == "vec256l12-onnx": | |
from vencoder.ContentVec256L12_Onnx import ContentVec256L12_Onnx | |
speech_encoder_object = ContentVec256L9(device = device) | |
elif speech_encoder == "vec768l9-onnx": | |
from vencoder.ContentVec768L9_Onnx import ContentVec768L9_Onnx | |
speech_encoder_object = ContentVec256L9(device = device) | |
elif speech_encoder == "vec768l12-onnx": | |
from vencoder.ContentVec768L12_Onnx import ContentVec768L12_Onnx | |
speech_encoder_object = ContentVec256L9(device = device) | |
elif speech_encoder == "hubertsoft-onnx": | |
from vencoder.HubertSoft_Onnx import HubertSoft_Onnx | |
speech_encoder_object = HubertSoft(device = device) | |
elif speech_encoder == "hubertsoft": | |
from vencoder.HubertSoft import HubertSoft | |
speech_encoder_object = HubertSoft(device = device) | |
elif speech_encoder == "whisper-ppg": | |
from vencoder.WhisperPPG import WhisperPPG | |
speech_encoder_object = WhisperPPG(device = device) | |
else: | |
raise Exception("Unknown speech encoder") | |
return speech_encoder_object | |
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): | |
assert os.path.isfile(checkpoint_path) | |
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') | |
iteration = checkpoint_dict['iteration'] | |
learning_rate = checkpoint_dict['learning_rate'] | |
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None: | |
optimizer.load_state_dict(checkpoint_dict['optimizer']) | |
saved_state_dict = checkpoint_dict['model'] | |
if hasattr(model, 'module'): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
try: | |
# assert "dec" in k or "disc" in k | |
# print("load", k) | |
new_state_dict[k] = saved_state_dict[k] | |
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape) | |
except: | |
print("error, %s is not in the checkpoint" % k) | |
logger.info("%s is not in the checkpoint" % k) | |
new_state_dict[k] = v | |
if hasattr(model, 'module'): | |
model.module.load_state_dict(new_state_dict) | |
else: | |
model.load_state_dict(new_state_dict) | |
print("load ") | |
logger.info("Loaded checkpoint '{}' (iteration {})".format( | |
checkpoint_path, iteration)) | |
return model, optimizer, learning_rate, iteration | |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
logger.info("Saving model and optimizer state at iteration {} to {}".format( | |
iteration, checkpoint_path)) | |
if hasattr(model, 'module'): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
torch.save({'model': state_dict, | |
'iteration': iteration, | |
'optimizer': optimizer.state_dict(), | |
'learning_rate': learning_rate}, checkpoint_path) | |
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True): | |
"""Freeing up space by deleting saved ckpts | |
Arguments: | |
path_to_models -- Path to the model directory | |
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth | |
sort_by_time -- True -> chronologically delete ckpts | |
False -> lexicographically delete ckpts | |
""" | |
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))] | |
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1))) | |
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))) | |
sort_key = time_key if sort_by_time else name_key | |
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key) | |
to_del = [os.path.join(path_to_models, fn) for fn in | |
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])] | |
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}") | |
del_routine = lambda x: [os.remove(x), del_info(x)] | |
rs = [del_routine(fn) for fn in to_del] | |
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): | |
for k, v in scalars.items(): | |
writer.add_scalar(k, v, global_step) | |
for k, v in histograms.items(): | |
writer.add_histogram(k, v, global_step) | |
for k, v in images.items(): | |
writer.add_image(k, v, global_step, dataformats='HWC') | |
for k, v in audios.items(): | |
writer.add_audio(k, v, global_step, audio_sampling_rate) | |
def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
f_list = glob.glob(os.path.join(dir_path, regex)) | |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
x = f_list[-1] | |
print(x) | |
return x | |
def plot_spectrogram_to_numpy(spectrogram): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger('matplotlib') | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(10,2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", | |
interpolation='none') | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def plot_alignment_to_numpy(alignment, info=None): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger('matplotlib') | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(6, 4)) | |
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', | |
interpolation='none') | |
fig.colorbar(im, ax=ax) | |
xlabel = 'Decoder timestep' | |
if info is not None: | |
xlabel += '\n\n' + info | |
plt.xlabel(xlabel) | |
plt.ylabel('Encoder timestep') | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def load_wav_to_torch(full_path): | |
sampling_rate, data = read(full_path) | |
return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
def load_filepaths_and_text(filename, split="|"): | |
with open(filename, encoding='utf-8') as f: | |
filepaths_and_text = [line.strip().split(split) for line in f] | |
return filepaths_and_text | |
def get_hparams(init=True): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-c', '--config', type=str, default="./configs/config.json", | |
help='JSON file for configuration') | |
parser.add_argument('-m', '--model', type=str, required=True, | |
help='Model name') | |
args = parser.parse_args() | |
model_dir = os.path.join("./logs", args.model) | |
if not os.path.exists(model_dir): | |
os.makedirs(model_dir) | |
config_path = args.config | |
config_save_path = os.path.join(model_dir, "config.json") | |
if init: | |
with open(config_path, "r") as f: | |
data = f.read() | |
with open(config_save_path, "w") as f: | |
f.write(data) | |
else: | |
with open(config_save_path, "r") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams = HParams(**config) | |
hparams.model_dir = model_dir | |
return hparams | |
def get_hparams_from_dir(model_dir): | |
config_save_path = os.path.join(model_dir, "config.json") | |
with open(config_save_path, "r") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams =HParams(**config) | |
hparams.model_dir = model_dir | |
return hparams | |
def get_hparams_from_file(config_path): | |
with open(config_path, "r") as f: | |
data = f.read() | |
config = json.loads(data) | |
hparams =HParams(**config) | |
return hparams | |
def check_git_hash(model_dir): | |
source_dir = os.path.dirname(os.path.realpath(__file__)) | |
if not os.path.exists(os.path.join(source_dir, ".git")): | |
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( | |
source_dir | |
)) | |
return | |
cur_hash = subprocess.getoutput("git rev-parse HEAD") | |
path = os.path.join(model_dir, "githash") | |
if os.path.exists(path): | |
saved_hash = open(path).read() | |
if saved_hash != cur_hash: | |
logger.warn("git hash values are different. {}(saved) != {}(current)".format( | |
saved_hash[:8], cur_hash[:8])) | |
else: | |
open(path, "w").write(cur_hash) | |
def get_logger(model_dir, filename="train.log"): | |
global logger | |
logger = logging.getLogger(os.path.basename(model_dir)) | |
logger.setLevel(logging.DEBUG) | |
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") | |
if not os.path.exists(model_dir): | |
os.makedirs(model_dir) | |
h = logging.FileHandler(os.path.join(model_dir, filename)) | |
h.setLevel(logging.DEBUG) | |
h.setFormatter(formatter) | |
logger.addHandler(h) | |
return logger | |
def repeat_expand_2d(content, target_len): | |
# content : [h, t] | |
src_len = content.shape[-1] | |
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device) | |
temp = torch.arange(src_len+1) * target_len / src_len | |
current_pos = 0 | |
for i in range(target_len): | |
if i < temp[current_pos+1]: | |
target[:, i] = content[:, current_pos] | |
else: | |
current_pos += 1 | |
target[:, i] = content[:, current_pos] | |
return target | |
def mix_model(model_paths,mix_rate,mode): | |
mix_rate = torch.FloatTensor(mix_rate)/100 | |
model_tem = torch.load(model_paths[0]) | |
models = [torch.load(path)["model"] for path in model_paths] | |
if mode == 0: | |
mix_rate = F.softmax(mix_rate,dim=0) | |
for k in model_tem["model"].keys(): | |
model_tem["model"][k] = torch.zeros_like(model_tem["model"][k]) | |
for i,model in enumerate(models): | |
model_tem["model"][k] += model[k]*mix_rate[i] | |
torch.save(model_tem,os.path.join(os.path.curdir,"output.pth")) | |
return os.path.join(os.path.curdir,"output.pth") | |
class HParams(): | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
if type(v) == dict: | |
v = HParams(**v) | |
self[k] = v | |
def keys(self): | |
return self.__dict__.keys() | |
def items(self): | |
return self.__dict__.items() | |
def values(self): | |
return self.__dict__.values() | |
def __len__(self): | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
return setattr(self, key, value) | |
def __contains__(self, key): | |
return key in self.__dict__ | |
def __repr__(self): | |
return self.__dict__.__repr__() | |
def get(self,index): | |
return self.__dict__.get(index) | |
class Volume_Extractor: | |
def __init__(self, hop_size = 512): | |
self.hop_size = hop_size | |
def extract(self, audio): # audio: 2d tensor array | |
if not isinstance(audio,torch.Tensor): | |
audio = torch.Tensor(audio) | |
n_frames = int(audio.size(-1) // self.hop_size) | |
audio2 = audio ** 2 | |
audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect') | |
volume = torch.FloatTensor([torch.mean(audio2[:,int(n * self.hop_size) : int((n + 1) * self.hop_size)]) for n in range(n_frames)]) | |
volume = torch.sqrt(volume) | |
return volume |