|
import os |
|
import yaml |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from .diffusion import GaussianDiffusion |
|
from .wavenet import WaveNet |
|
from .vocoder import Vocoder |
|
|
|
class DotDict(dict): |
|
def __getattr__(*args): |
|
val = dict.get(*args) |
|
return DotDict(val) if type(val) is dict else val |
|
|
|
__setattr__ = dict.__setitem__ |
|
__delattr__ = dict.__delitem__ |
|
|
|
|
|
def load_model_vocoder( |
|
model_path, |
|
device='cpu', |
|
config_path = None |
|
): |
|
if config_path is None: config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml') |
|
else: config_file = config_path |
|
|
|
with open(config_file, "r") as config: |
|
args = yaml.safe_load(config) |
|
args = DotDict(args) |
|
|
|
|
|
vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=device) |
|
|
|
|
|
model = Unit2Mel( |
|
args.data.encoder_out_channels, |
|
args.model.n_spk, |
|
args.model.use_pitch_aug, |
|
vocoder.dimension, |
|
args.model.n_layers, |
|
args.model.n_chans, |
|
args.model.n_hidden) |
|
|
|
print(' [Loading] ' + model_path) |
|
ckpt = torch.load(model_path, map_location=torch.device(device)) |
|
model.to(device) |
|
model.load_state_dict(ckpt['model']) |
|
model.eval() |
|
return model, vocoder, args |
|
|
|
|
|
class Unit2Mel(nn.Module): |
|
def __init__( |
|
self, |
|
input_channel, |
|
n_spk, |
|
use_pitch_aug=False, |
|
out_dims=128, |
|
n_layers=20, |
|
n_chans=384, |
|
n_hidden=256): |
|
super().__init__() |
|
self.unit_embed = nn.Linear(input_channel, n_hidden) |
|
self.f0_embed = nn.Linear(1, n_hidden) |
|
self.volume_embed = nn.Linear(1, n_hidden) |
|
if use_pitch_aug: |
|
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False) |
|
else: |
|
self.aug_shift_embed = None |
|
self.n_spk = n_spk |
|
if n_spk is not None and n_spk > 1: |
|
self.spk_embed = nn.Embedding(n_spk, n_hidden) |
|
|
|
|
|
self.decoder = GaussianDiffusion(WaveNet(out_dims, n_layers, n_chans, n_hidden), out_dims=out_dims) |
|
|
|
def forward(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None, |
|
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True): |
|
|
|
''' |
|
input: |
|
B x n_frames x n_unit |
|
return: |
|
dict of B x n_frames x feat |
|
''' |
|
|
|
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume) |
|
if self.n_spk is not None and self.n_spk > 1: |
|
if spk_mix_dict is not None: |
|
for k, v in spk_mix_dict.items(): |
|
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device) |
|
x = x + v * self.spk_embed(spk_id_torch) |
|
else: |
|
x = x + self.spk_embed(spk_id) |
|
if self.aug_shift_embed is not None and aug_shift is not None: |
|
x = x + self.aug_shift_embed(aug_shift / 5) |
|
x = self.decoder(x, gt_spec=gt_spec, infer=infer, infer_speedup=infer_speedup, method=method, k_step=k_step, use_tqdm=use_tqdm) |
|
|
|
return x |
|
|
|
|