ccbo / app.py
FrankWanger's picture
updated description
44c07a4
import numpy as np
import gradio as gr
import pickle
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import tempfile
import os
# Split the styling into two separate functions for clarity and simplicity
def style_feasible_column(val):
"""Style for the Feasible? column"""
if val == 'Success':
return 'color:white;background-color: lightgreen'
elif val == 'Failed':
return 'color:white;background-color: lightcoral'
return ''
def style_size_column(val, target_size=3.0):
"""Style for the Size column based on proximity to target"""
try:
val_float = float(val)
distance = val_float - target_size # Signed distance from target
abs_distance = abs(distance)
# Calculate width percentage based on distance
max_distance = 2.5
width_pct = 100 - min(abs_distance / max_distance * 100, 100)
# Determine color based on value position relative to target
if distance < 0:
color = f"rgba(0, 128, 128, {min(1.0, 0.4 + 0.6*(1-abs_distance/max_distance))})" # Teal for below
else:
color = f"rgba(230, 97, 0, {min(1.0, 0.4 + 0.6*(1-abs_distance/max_distance))})" # Orange for above
# Text styling based on proximity to target
if abs_distance > 3:
text_color = "grey"
elif abs_distance > 1:
text_color = "black"
else:
text_color = "white"
font_weight = "bold" if abs_distance < 0.5 else "normal"
# Create gradient style
return (
f"background: linear-gradient(90deg, {color} {width_pct}%, transparent {width_pct}%); "
f"color: {text_color}; "
f"font-weight: {font_weight}; "
)
except (ValueError, TypeError):
return ''
# Simulation function for electrospraying
def sim_espray_constrained(x, noise_se=None):
# Ensure x is a numpy array with float data type
x = np.array(x, dtype=float)
# Ensure x is a 2D array
if x.ndim == 1:
x = x.reshape(1, -1)
# Define the equations
conc = x[:, 0]
flow_rate = x[:, 1]
voltage = x[:, 2]
solvent = x[:, 3]
diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers
if noise_se is not None:
diameter = diameter + noise_se * np.random.randn(*diameter.shape)
exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
return np.column_stack((diameter, exp_con))
# Initialize experiment data
X_init = np.array([[0.5, 15, 10, 0],
[0.5, 0.1, 10, 1],
[3, 20, 15, 0],
[1, 20, 10, 1],
[0.2, 0.02, 10, 1]])
Y_init = sim_espray_constrained(X_init)
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
exp_record_df['Size (um)'] = Y_init[:, 0]
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
# Replace the static prior_experiments_display with a function
def generate_prior_experiments_display(target_size=3.0):
"""Generate styled prior experiments display based on target size"""
return exp_record_df.style\
.map(style_feasible_column, subset=['Feasible?'])\
.map(lambda x: style_size_column(x, target_size), subset=['Size (um)'])\
.format(precision=3)
# Functions for data processing and visualization
def import_results(target_size=3):
strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
file_name_dict = {
'0.5': 'best_distances_0_5.pkl',
'3': 'best_distances_3_0.pkl',
'22': 'best_distances_22_0.pkl'
}
# Load results from pickle file based on target size
with open(file_name_dict[str(target_size)], 'rb') as f:
best_distances = pickle.load(f)
# vstack all values in best_distances
best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)
best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
return best_distances_df_long
def calc_human_performance(df, target_size=3.0):
# Make a copy of the dataframe to avoid modifying the original
df_copy = df.copy()
# convert back solvent to 0 and 1
df_copy['Solvent'] = [0 if x == 'DMAc' else 1 for x in df_copy['Solvent']]
ROUNDS = len(df_copy) // 2
# Ensure all values are numeric
numeric_cols = ['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']
for col in numeric_cols:
df_copy[col] = pd.to_numeric(df_copy[col])
X_human = df_copy[numeric_cols].values
X_human_init = X_init.copy()
Y_human_init = Y_init.copy()
best_human_distance = []
for iter in range(ROUNDS + 1):
Y_distance = -np.abs(Y_human_init[:, 0] - target_size)
best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
# Check if we have more data for this iteration
if 2 * iter < len(X_human):
# Get the slice of new experiments
new_x = X_human[2 * iter:min(2 * (iter + 1), len(X_human))]
# Add the new experiments to our dataset
X_human_init = np.vstack([X_human_init, new_x])
Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])
return -np.array(best_human_distance)
def plot_results(exp_data_df, target_size=3.0):
# Extract human performance
best_human_distance = calc_human_performance(exp_data_df, target_size)
# Import results
best_distances_df_long = import_results(target_size)
fig = go.Figure()
strategies = best_distances_df_long['strategy'].unique()
for strategy in strategies:
strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
# Calculate mean and standard error
mean_regret = strategy_data.groupby('iteration')['regret'].mean()
std_regret = strategy_data.groupby('iteration')['regret'].std()
# Calculate standard error (SE = SD/√n)
n_trials = strategy_data.groupby('iteration')['regret'].count()
se_regret = std_regret / np.sqrt(n_trials)
iterations = mean_regret.index
color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
# Add trace for mean line
mean_trace = go.Scatter(
x=iterations,
y=mean_regret,
mode='lines',
name=strategy,
line=dict(width=2, color=color)
)
fig.add_trace(mean_trace)
# Add trace for shaded area (standard error)
fig.add_trace(go.Scatter(
x=list(iterations) + list(iterations[::-1]),
y=list(mean_regret + se_regret) + list((mean_regret - se_regret)[::-1]),
fill='toself',
fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
line=dict(color='rgba(255,255,255,0)'),
showlegend=False,
name=f'{strategy} (standard error)'
))
# Add trace for human performance
fig.add_trace(go.Scatter(
x=list(range(len(best_human_distance))),
y=best_human_distance,
mode='lines+markers',
name='Human',
line=dict(width=2, color='brown')
))
fig.update_layout(
title='Performance Comparison',
xaxis_title='Iteration',
yaxis_title='Regret (μm)',
legend_title='Strategy',
template='plotly_white',
legend=dict(
x=0.01,
y=0.01,
bgcolor='rgba(255, 255, 255, 0.5)',
bordercolor='rgba(0, 0, 0, 0.5)',
borderwidth=1
)
)
return fig
# Add function to calculate AUC
def calculate_auc(human_performance_values):
"""Calculate the Area Under the Curve for a user's performance"""
# Simple trapezoidal integration
if len(human_performance_values) <= 1:
return 0
# AUC calculation using trapezoidal rule
auc_value = np.trapezoid(human_performance_values, dx=1)
return round(auc_value, 4)
# Prediction function - simplified signature by removing unnecessary text params
def predict(state, target_size, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, voltage2, solvent2):
# Get current results storage from state or initialize if None
if state is None:
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
else:
results_storage = state.copy()
solvent_value1 = 0 if solvent1 == 'DMAc' else 1
solvent_value2 = 0 if solvent2 == 'DMAc' else 1
# Process inputs and get predictions
inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])
results1 = sim_espray_constrained(inputs1)
results2 = sim_espray_constrained(inputs2)
# Format and store results
results_df = pd.DataFrame([
[conc1, flow_rate1, voltage1, solvent_value1, results1[0, 0], results1[0, 1]],
[conc2, flow_rate2, voltage2, solvent_value2, results2[0, 0], results2[0, 1]]
], columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
results_storage = pd.concat([results_storage, results_df], ignore_index=True)
# Apply each styling function to its specific column
results_display = results_storage.style\
.map(style_feasible_column, subset=['Feasible?'])\
.map(lambda x: style_size_column(x, target_size), subset=['Size (um)'])\
.format(precision=3)
# Check if user has completed 5 rounds (10 experiments)
completed = len(results_storage) >= 10
message = ""
auc_value = 0
usr_level = ""
if completed:
# Calculate AUC
human_performance = calc_human_performance(results_storage, target_size)
auc_value = calculate_auc(human_performance)
# Set CCBO value based on target size
if target_size == 3.0:
ccbo_value = 1.40
elif target_size == 0.5:
ccbo_value = 0.92
else:
ccbo_value = 8.51
# Calculate performance as a percentage of CCBO value
performance_percentage = (auc_value / ccbo_value) * 100
if performance_percentage > 300:
usr_level = "randomly playing!"
elif performance_percentage > 150:
usr_level = "a beginner."
elif performance_percentage > 100:
usr_level = "an intermediate user."
elif performance_percentage > 65:
usr_level = "an advanced user."
else:
usr_level = "... come on, you must have cheated (or you are extremely lucky)!"
message = f"🎉 Congratulations! You've completed all 5 rounds. Your performance AUC is ** {auc_value:.2f} ** and CCBO was ** {ccbo_value} **. You seems to be {usr_level} Now you can download your results or click reset to try again!"
# Return updated state and UI updates
return (
results_storage,
gr.DataFrame(value=generate_prior_experiments_display(target_size), label="Prior Experiments"),
gr.DataFrame(value=results_display, label="Your Results"),
plot_results(results_storage, target_size),
gr.update(visible=completed), # Show download button when completed
gr.update(value=message, visible=completed), # Show message when completed
gr.update(value=auc_value), # Update AUC value
gr.update(visible=completed), # Show result file component
gr.update(interactive=False if completed else True) # Disable target selection once completed
)
# Reset results function
def reset_results(state, target_size):
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
# Generate the plot for empty results
empty_plot = plot_results(results_storage, target_size)
# Apply each styling function to its specific column
styled_results = results_storage.style\
.map(style_feasible_column, subset=['Feasible?'])\
.map(lambda x: style_size_column(x, target_size), subset=['Size (um)'])\
.format(precision=3)
return (
results_storage, # results_state
gr.DataFrame(value=generate_prior_experiments_display(target_size), label="Prior Experiments"), # prior_experiments
gr.DataFrame(value=styled_results, label="Your Results"), # results_df
empty_plot, # perf_plot
gr.update(visible=False), # download_btn visibility
gr.update(value="", visible=False), # completion_message
gr.update(value=0), # auc_state
gr.update(visible=False), # result_file visibility
gr.update(interactive=True) # Enable target selection
)
# Function to prepare results for download
def prepare_results_for_download(results, target_size):
"""Prepare results dataframe for download and save to CSV"""
if results is None or len(results) == 0:
return None
# Calculate human performance
human_performance = calc_human_performance(results, target_size)
auc_value = calculate_auc(human_performance)
# Add a summary row with AUC
summary_df = pd.DataFrame({
'Concentration (%w/v)': ["Performance AUC:"],
'Flow Rate (mL/h)': [auc_value],
'Voltage (kV)': [""],
'Solvent': [""],
'Size (um)': [""],
'Feasible?': [""]
})
# Combine results with summary
combined_df = pd.concat([results, summary_df], ignore_index=True)
combined_df = pd.concat([pd.DataFrame([{"Concentration (%w/v)": f"Target size: {target_size} μm"}]), combined_df], ignore_index=True)
# Save to temporary file
temp_dir = tempfile.gettempdir()
output_path = os.path.join(temp_dir, f"electrospray_results_{str(target_size).replace('.', '_')}.csv")
combined_df.to_csv(output_path, index=False)
return output_path
# Application description
description = "<h3>Welcome, challenger! 🎉</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray!</p><p> Rules are simple:</p> <ul><li>🔍 Examine! Prior experiments are on the right (or below on your phone), always remeber the target you've selected! </li><li>⚠️ Be aware! Experiment may <u><i><strong>fail</strong></i></u> due to incompatible parameters, they don't count towards your optimization!</li><li>💡 Propose! Set your parameters, you have <strong>2</strong> chances in each round, use them wisely!</li><li>🚀 <strong>Submit</strong> to see the results, reflect and improve your selection!</li><li>🔄 Repeat! Run the process for <strong>5</strong> rounds to see if you can beat CCBO!</li></ul></p><p>Your data will not be stored, so feel free to play again, good luck! 🍀</p><p>Impressed by CCBO? Check our <a href='https://github.com/FrankWanger/CCBO'>implementation</a> and <a href='https://arxiv.org/abs/2411.10471'>paper!</a></p>"
# Create Gradio interface
with gr.Blocks() as demo:
# Add state component to store user-specific results
results_state = gr.State()
auc_state = gr.State(value=0)
with gr.Row():
# Input parameters column
with gr.Column():
gr.Markdown("## Human vs CCBO Campaign - Optimize Electrospray")
gr.Markdown(description)
# Add target size selection with new 22.0 option
target_size = gr.Radio(
[3.0, 0.5, 22.0],
label="🎯 Select Target Size (μm)",
value=3.0,
info="Choose the particle size you want to optimize for"
)
with gr.Row():
with gr.Column():
gr.Markdown("### Experiment 1")
conc1 = gr.Slider(minimum=0.05, maximum=5.0, value=1.2, step=0.001, label="Concentration (%w/v)")
flow_rate1 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
voltage1 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
solvent1 = gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent')
with gr.Column():
gr.Markdown("### Experiment 2")
conc2 = gr.Slider(minimum=0.05, maximum=5.0, value=2.8, step=0.001, label="Concentration (%w/v)")
flow_rate2 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
voltage2 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
solvent2 = gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
# Group all buttons in a single row
with gr.Row():
#make submit btn highlight color
submit_btn = gr.Button("🚀 Submit", variant="primary")
reset_btn = gr.Button("Reset")
download_btn = gr.Button("📥 Download Results", visible=False)
# Add notification component (initially hidden)
completion_message = gr.Markdown(visible=False)
# File output component
result_file = gr.File(label="Download Results CSV", visible=False)
# Results display column
with gr.Column():
prior_experiments = gr.DataFrame(value=generate_prior_experiments_display(target_size), label="Prior Experiments")
results_df = gr.DataFrame(label="Your Results")
perf_plot = gr.Plot(label="Performance Comparison")
# Connect the submit button to the predict function
submit_btn.click(
fn=predict,
inputs=[
results_state,
target_size,
conc1, flow_rate1, voltage1, solvent1,
conc2, flow_rate2, voltage2, solvent2
],
outputs=[
results_state, prior_experiments, results_df, perf_plot,
download_btn, completion_message, auc_state, result_file,
target_size
]
)
# Connect the reset button to the reset_results function
reset_btn.click(
fn=reset_results,
inputs=[results_state, target_size],
outputs=[
results_state, prior_experiments, results_df, perf_plot,
download_btn, completion_message, auc_state, result_file,
target_size
]
)
# Connect download button to file download
download_btn.click(
fn=prepare_results_for_download,
inputs=[results_state, target_size],
outputs=[result_file]
)
# When target size changes, reset the application
target_size.change(
fn=reset_results,
inputs=[results_state, target_size],
outputs=[
results_state, prior_experiments, results_df, perf_plot,
download_btn, completion_message, auc_state, result_file,
target_size
]
)
demo.launch()