Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
# 1. 模型加载 (请替换为您选择的 VLM 模型ID)
|
| 6 |
+
MODEL_ID = "HuggingFaceM4/idefics-9b-instruct" # 示例 VLM
|
| 7 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 8 |
+
model = AutoModelForVision2Seq.from_pretrained(MODEL_ID)
|
| 9 |
+
|
| 10 |
+
# 2. 推理函数:接受图片和文本
|
| 11 |
+
def vlm_inference(image: Image.Image, prompt: str):
|
| 12 |
+
"""
|
| 13 |
+
接收用户上传的图片和文本提示,并返回 VLM 的生成结果。
|
| 14 |
+
"""
|
| 15 |
+
if image is None:
|
| 16 |
+
return "请上传一张图片。"
|
| 17 |
+
|
| 18 |
+
# 构建 VLM 输入格式 (根据模型要求调整)
|
| 19 |
+
# 对于 IDEFICS 这类 VLM,输入通常是一个包含图片和文本的列表
|
| 20 |
+
chats = [
|
| 21 |
+
"User:",
|
| 22 |
+
image,
|
| 23 |
+
f"Prompt: {prompt}",
|
| 24 |
+
"<end_of_utterance>",
|
| 25 |
+
"\nAssistant:"
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
# 预处理和生成
|
| 29 |
+
inputs = processor(chats, return_tensors="pt")
|
| 30 |
+
|
| 31 |
+
# 注意:大型 VLM 需要 GPU 部署。如果使用免费 CPU 空间,请选择小型 VLM
|
| 32 |
+
# outputs = model.generate(**inputs, max_length=128) # 确保模型在 CPU/GPU 上
|
| 33 |
+
|
| 34 |
+
# 模拟生成(如果您正在测试或使用 CPU 部署)
|
| 35 |
+
# 请取消注释上面的 model.generate 行,并删除下面这行
|
| 36 |
+
outputs = f"(模型生成结果)您询问的是图片中的内容:'{prompt}'。图片尺寸为 {image.size}。"
|
| 37 |
+
|
| 38 |
+
# 假设模型返回文本结果
|
| 39 |
+
return outputs
|
| 40 |
+
|
| 41 |
+
# 3. Gradio 界面定义
|
| 42 |
+
with gr.Blocks(title="VLM 多模态聊天演示") as demo:
|
| 43 |
+
gr.Markdown("# 🎨 Hugging Face Spaces VLM 演示")
|
| 44 |
+
|
| 45 |
+
# 定义输入组件
|
| 46 |
+
with gr.Row():
|
| 47 |
+
image_input = gr.Image(type="pil", label="上传图片")
|
| 48 |
+
prompt_input = gr.Textbox(label="输入文本提示 (例如: 描述这张图片的内容)")
|
| 49 |
+
|
| 50 |
+
# 定义输出组件和按钮
|
| 51 |
+
output_text = gr.Textbox(label="VLM 生成结果")
|
| 52 |
+
submit_btn = gr.Button("运行 VLM")
|
| 53 |
+
|
| 54 |
+
# 绑定函数
|
| 55 |
+
submit_btn.click(
|
| 56 |
+
fn=vlm_inference,
|
| 57 |
+
inputs=[image_input, prompt_input],
|
| 58 |
+
outputs=output_text
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# 启动应用
|
| 62 |
+
if __name__ == "__main__":
|
| 63 |
+
# 在本地测试时运行
|
| 64 |
+
demo.launch()
|