testfhb / app.py
FrancoisHB's picture
Commit Test SRT
4fa5477
raw
history blame
1.84 kB
import streamlit as st
from transformers import pipeline
from heapq import nlargest
# Function to extract text from SRT-formatted text
def extract_text_from_srt_text(srt_text):
lines = srt_text.strip().split("\n\n") # Split by empty lines to separate subtitles
texts = [subtitle.split("\n")[2] for subtitle in lines if subtitle.strip()] # Extract text from the third line of each subtitle
return " ".join(texts)
# Function to generate summary from text
def generate_summary(text, summary_length):
summarizer = pipeline("summarization")
summary = summarizer(text, max_length=summary_length, min_length=30, do_sample=False)
summary_text = summary[0]["summary_text"]
sentences = text.split(". ")
top_sentences = nlargest(4, sentences, key=len)
top_subjects = "\n".join(top_sentences)
return summary_text, top_subjects
# Streamlit app
st.title("SRT Summarization")
# Text area for user to input SRT-formatted text
srt_text_input = st.text_area("Paste SRT-formatted text here:")
# Button to trigger summarization
if st.button("Summarize"):
# Check if text area is not empty
if srt_text_input.strip():
# Show loading spinner while processing
with st.spinner("Summarizing..."):
# Extract text from SRT-formatted text
text_to_summarize = extract_text_from_srt_text(srt_text_input)
# Generate summary and top subjects
summary, top_subjects = generate_summary(text_to_summarize, 150) # You can adjust the summary length as needed
# Display summary and top subjects
st.subheader("Summary:")
st.write(summary)
st.subheader("Top 4 Subjects:")
st.write(top_subjects, bullet=True) # Display as bullet points
else:
st.warning("Please enter some SRT-formatted text.")