Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from heapq import nlargest | |
# Function to extract text from SRT-formatted text | |
def extract_text_from_srt_text(srt_text): | |
lines = srt_text.strip().split("\n\n") # Split by empty lines to separate subtitles | |
texts = [subtitle.split("\n")[2] for subtitle in lines if subtitle.strip()] # Extract text from the third line of each subtitle | |
return " ".join(texts) | |
# Function to generate summary from text | |
def generate_summary(text, summary_length): | |
summarizer = pipeline("summarization") | |
summary = summarizer(text, max_length=summary_length, min_length=30, do_sample=False) | |
summary_text = summary[0]["summary_text"] | |
sentences = text.split(". ") | |
top_sentences = nlargest(4, sentences, key=len) | |
top_subjects = "\n".join(top_sentences) | |
return summary_text, top_subjects | |
# Streamlit app | |
st.title("SRT Summarization") | |
# Text area for user to input SRT-formatted text | |
srt_text_input = st.text_area("Paste SRT-formatted text here:") | |
# Button to trigger summarization | |
if st.button("Summarize"): | |
# Check if text area is not empty | |
if srt_text_input.strip(): | |
# Show loading spinner while processing | |
with st.spinner("Summarizing..."): | |
# Extract text from SRT-formatted text | |
text_to_summarize = extract_text_from_srt_text(srt_text_input) | |
# Generate summary and top subjects | |
summary, top_subjects = generate_summary(text_to_summarize, 150) # You can adjust the summary length as needed | |
# Display summary and top subjects | |
st.subheader("Summary:") | |
st.write(summary) | |
st.subheader("Top 4 Subjects:") | |
st.write(top_subjects, bullet=True) # Display as bullet points | |
else: | |
st.warning("Please enter some SRT-formatted text.") | |