FranciscoLozDataScience commited on
Commit
6195581
·
1 Parent(s): 4afc0a1

change input to be df

Browse files
Files changed (2) hide show
  1. app.py +42 -12
  2. model.py +9 -5
app.py CHANGED
@@ -17,20 +17,50 @@ def predict(
17
  '''
18
  Predict the label for the data inputed
19
  '''
20
- # Combine the input data into a NumPy array
21
- input_array = np.array([
22
- age, height, weight,
23
- waist, eye_L, eye_R,
24
- hear_L, hear_R, systolic,
25
- relaxation, fasting_blood_sugar, cholesterol,
26
- triglyceride, HDL, LDL,
27
- hemoglobin, urine_protein,
28
- serum_creatinine, AST, ALT,
29
- Gtp, dental_caries
30
- ])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  #predict
33
- label = MODEL.predict(input_array)
 
34
 
35
  return label
36
 
 
17
  '''
18
  Predict the label for the data inputed
19
  '''
20
+ # # Combine the input data into a NumPy array
21
+ # input_array = np.array([
22
+ # age, height, weight,
23
+ # waist, eye_L, eye_R,
24
+ # hear_L, hear_R, systolic,
25
+ # relaxation, fasting_blood_sugar, cholesterol,
26
+ # triglyceride, HDL, LDL,
27
+ # hemoglobin, urine_protein,
28
+ # serum_creatinine, AST, ALT,
29
+ # Gtp, dental_caries
30
+ # ])
31
+
32
+ # Create a dictionary with input data and dataset var names
33
+ input_data = {
34
+ "age": age,
35
+ "height(cm)": height,
36
+ "weight(kg)": weight,
37
+ "waist(cm)": waist,
38
+ "eyesight(left)": eye_L,
39
+ "eyesight(right)": eye_R,
40
+ "hearing(left)": hear_L,
41
+ "hearing(right)": hear_R,
42
+ "systolic": systolic,
43
+ "relaxation": relaxation,
44
+ "fasting blood sugar": fasting_blood_sugar,
45
+ "Cholesterol": cholesterol,
46
+ "triglyceride": triglyceride,
47
+ "HDL": HDL,
48
+ "LDL": LDL,
49
+ "hemoglobin": hemoglobin,
50
+ "Urine protein": urine_protein,
51
+ "serum creatinine": serum_creatinine,
52
+ "AST": AST,
53
+ "ALT": ALT,
54
+ "Gtp": Gtp,
55
+ "dental caries": dental_caries
56
+ }
57
+
58
+ # Convert the dictionary to a pandas DataFrame
59
+ input_df = pd.DataFrame(input_data, index=[0])
60
 
61
  #predict
62
+ # label = MODEL.predict(input_array)
63
+ label = MODEL.predict(input_df)
64
 
65
  return label
66
 
model.py CHANGED
@@ -31,7 +31,7 @@ class SmokerModel:
31
 
32
  return new_data_scaled
33
 
34
- def predict(self, X: np.ndarray) -> str:
35
  """
36
  Make a prediction on one sample using the loaded model.
37
 
@@ -44,16 +44,20 @@ class SmokerModel:
44
  predicted label
45
  """
46
 
 
 
 
47
  # Check if the array is 1-dimensional aka one sample
48
- if len(X.shape) != 1:
49
  raise ValueError("Input array must be one-dimensional (one sample), but got a shape of {}".format(X.shape))
50
  return
51
 
52
  # Reshape the array
53
- X = X.reshape(1, -1)
 
54
 
55
- # scale the data
56
- X_scaled = self.scale(X)
57
 
58
  # Now, use the scaled data to make predictions using the loaded model
59
  array = self.model.predict(X_scaled)
 
31
 
32
  return new_data_scaled
33
 
34
+ def predict(self, X: np.ndarray) -> str: #TODO: change type to pd df
35
  """
36
  Make a prediction on one sample using the loaded model.
37
 
 
44
  predicted label
45
  """
46
 
47
+ # scale the data
48
+ X_scaled = self.scale(X)
49
+
50
  # Check if the array is 1-dimensional aka one sample
51
+ if len(X_scaled.shape) != 1:
52
  raise ValueError("Input array must be one-dimensional (one sample), but got a shape of {}".format(X.shape))
53
  return
54
 
55
  # Reshape the array
56
+ # X = X.reshape(1, -1)
57
+ X_scaled = X_scaled.reshape(1, -1)
58
 
59
+ # # scale the data
60
+ # X_scaled = self.scale(X)
61
 
62
  # Now, use the scaled data to make predictions using the loaded model
63
  array = self.model.predict(X_scaled)