Spaces:
Running
on
Zero
Running
on
Zero
FrancescoLR
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,7 @@ def extract_middle_slices(nifti_path, output_image_path, slice_size=180):
|
|
33 |
Extracts slices centered around the center of mass of non-zero voxels in a 3D NIfTI image.
|
34 |
The slices are taken along axial, coronal, and sagittal planes and saved as a single PNG.
|
35 |
"""
|
36 |
-
|
37 |
img = nib.load(nifti_path)
|
38 |
data = img.get_fdata()
|
39 |
|
@@ -44,18 +44,23 @@ def extract_middle_slices(nifti_path, output_image_path, slice_size=180):
|
|
44 |
# Define half the slice size to extract regions around the center of mass
|
45 |
half_size = slice_size // 2
|
46 |
|
47 |
-
# Safely extract slices
|
48 |
-
def
|
49 |
slices = [slice(None)] * 3
|
50 |
-
slices[axis] =
|
51 |
-
|
52 |
-
min(center[axis] + half_size, data.shape[axis])
|
53 |
-
)
|
54 |
-
return data[tuple(slices)]
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Create subplots
|
61 |
fig, axes = plt.subplots(1, 3, figsize=(12, 4))
|
@@ -78,7 +83,6 @@ def extract_middle_slices(nifti_path, output_image_path, slice_size=180):
|
|
78 |
plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0)
|
79 |
plt.close()
|
80 |
|
81 |
-
|
82 |
# Function to run nnUNet inference
|
83 |
@spaces.GPU # Decorate the function to allocate GPU for its execution
|
84 |
def run_nnunet_predict(nifti_file):
|
|
|
33 |
Extracts slices centered around the center of mass of non-zero voxels in a 3D NIfTI image.
|
34 |
The slices are taken along axial, coronal, and sagittal planes and saved as a single PNG.
|
35 |
"""
|
36 |
+
# Load NIfTI image and get the data
|
37 |
img = nib.load(nifti_path)
|
38 |
data = img.get_fdata()
|
39 |
|
|
|
44 |
# Define half the slice size to extract regions around the center of mass
|
45 |
half_size = slice_size // 2
|
46 |
|
47 |
+
# Safely extract 2D slices
|
48 |
+
def extract_2d_slice(data, center, axis):
|
49 |
slices = [slice(None)] * 3
|
50 |
+
slices[axis] = center[axis]
|
51 |
+
extracted_slice = data[tuple(slices)]
|
|
|
|
|
|
|
52 |
|
53 |
+
# Crop around the center for the other two dimensions
|
54 |
+
other_axes = [i for i in range(3) if i != axis]
|
55 |
+
for i in other_axes:
|
56 |
+
start = max(center[i] - half_size, 0)
|
57 |
+
end = min(center[i] + half_size, data.shape[i])
|
58 |
+
extracted_slice = np.take(extracted_slice, range(start, end), axis=i)
|
59 |
+
return extracted_slice
|
60 |
+
|
61 |
+
axial_slice = extract_2d_slice(data, center, axis=2) # Axial (z-axis)
|
62 |
+
coronal_slice = extract_2d_slice(data, center, axis=1) # Coronal (y-axis)
|
63 |
+
sagittal_slice = extract_2d_slice(data, center, axis=0) # Sagittal (x-axis)
|
64 |
|
65 |
# Create subplots
|
66 |
fig, axes = plt.subplots(1, 3, figsize=(12, 4))
|
|
|
83 |
plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0)
|
84 |
plt.close()
|
85 |
|
|
|
86 |
# Function to run nnUNet inference
|
87 |
@spaces.GPU # Decorate the function to allocate GPU for its execution
|
88 |
def run_nnunet_predict(nifti_file):
|