Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import subprocess | |
import os | |
import shutil | |
from huggingface_hub import hf_hub_download | |
import torch | |
import nibabel as nib | |
import matplotlib.pyplot as plt | |
import spaces # Import spaces for GPU decoration | |
import numpy as np | |
from scipy.ndimage import center_of_mass, zoom | |
# Define paths | |
MODEL_DIR = "./model" # Local directory to store the downloaded model | |
DATASET_DIR = os.path.join(MODEL_DIR, "Dataset004_WML") # Directory for Dataset004_WML | |
INPUT_DIR = "/tmp/input" | |
OUTPUT_DIR = "/tmp/output" | |
# Hugging Face Model Repository | |
REPO_ID = "FrancescoLR/FLAMeS-model" # Replace with your actual model repository ID | |
# Function to download the Dataset004_WML folder | |
def download_model(): | |
if not os.path.exists(DATASET_DIR): | |
os.makedirs(DATASET_DIR, exist_ok=True) | |
print("Downloading Dataset004_WML.zip...") | |
zip_path = hf_hub_download(repo_id=REPO_ID, filename="Dataset004_WML.zip", cache_dir=MODEL_DIR) | |
subprocess.run(["unzip", "-o", zip_path, "-d", MODEL_DIR]) | |
print("Dataset004_WML downloaded and extracted.") | |
def resample_to_isotropic(data, affine, target_spacing=1.0): | |
""" | |
Resamples a 3D NIfTI image to isotropic voxel size. | |
Parameters: | |
data (numpy.ndarray): The input 3D image data. | |
affine (numpy.ndarray): The affine transformation matrix. | |
target_spacing (float): Desired isotropic voxel spacing (in mm). | |
Returns: | |
resampled_data (numpy.ndarray): Resampled image data. | |
resampled_affine (numpy.ndarray): Updated affine matrix. | |
""" | |
# Extract current voxel dimensions from the affine matrix | |
current_spacing = np.sqrt((affine[:3, :3] ** 2).sum(axis=0)) | |
# Compute the scaling factors for resampling | |
scaling_factors = current_spacing / target_spacing | |
# Resample the data using zoom | |
resampled_data = zoom(data, zoom=scaling_factors, order=1) # Linear interpolation | |
# Update the affine matrix to reflect the new voxel dimensions | |
resampled_affine = affine.copy() | |
resampled_affine[:3, :3] /= scaling_factors[:, np.newaxis] | |
return resampled_data, resampled_affine | |
def extract_middle_slices(nifti_path, output_image_path, slice_size=180): | |
""" | |
Extracts slices centered around the center of mass of non-zero voxels in a 3D NIfTI image. | |
The slices are taken along axial, coronal, and sagittal planes and saved as a single PNG. | |
""" | |
# Load NIfTI image | |
img = nib.load(nifti_path) | |
data = img.get_fdata() | |
affine = img.affine | |
# Resample the image to 1 mm isotropic | |
resampled_data, _ = resample_to_isotropic(data, affine, target_spacing=1.0) | |
# Compute the center of mass of non-zero voxels | |
com = center_of_mass(resampled_data > 0) | |
center = np.round(com).astype(int) | |
# Define half the slice size | |
half_size = slice_size // 2 | |
def extract_middle_slices(nifti_path, output_image_path, slice_size=180, center=None): | |
""" | |
Extracts slices from a 3D NIfTI image. If a center is provided, it uses it; | |
otherwise, computes the center of mass of non-zero voxels. Slices are taken | |
along axial, coronal, and sagittal planes and saved as a single PNG. | |
""" | |
# Load NIfTI image | |
img = nib.load(nifti_path) | |
data = img.get_fdata() | |
affine = img.affine | |
# Resample the image to 1 mm isotropic | |
resampled_data, _ = resample_to_isotropic(data, affine, target_spacing=1.0) | |
# Compute or reuse the center of mass | |
if center is None: | |
com = center_of_mass(resampled_data > 0) | |
center = np.round(com).astype(int) | |
# Define half the slice size | |
half_size = slice_size // 2 | |
# Safely extract and pad 2D slices | |
def extract_2d_slice(data, center, axis): | |
slices = [slice(None)] * 3 | |
slices[axis] = center[axis] # Fix the axis to extract a single slice | |
extracted_slice = data[tuple(slices)] | |
# Crop the 2D slice around the center in the remaining dimensions | |
remaining_axes = [i for i in range(3) if i != axis] | |
cropped_slice = extracted_slice[ | |
max(center[remaining_axes[0]] - half_size, 0):min(center[remaining_axes[0]] + half_size, extracted_slice.shape[0]), | |
max(center[remaining_axes[1]] - half_size, 0):min(center[remaining_axes[1]] + half_size, extracted_slice.shape[1]), | |
] | |
# Pad the slice to ensure 180x180 dimensions | |
pad_height = slice_size - cropped_slice.shape[0] | |
pad_width = slice_size - cropped_slice.shape[1] | |
padded_slice = np.pad(cropped_slice, | |
((pad_height // 2, pad_height - pad_height // 2), | |
(pad_width // 2, pad_width - pad_width // 2)), | |
mode='constant', constant_values=0) | |
return padded_slice | |
# Extract slices in axial, coronal, and sagittal planes | |
axial_slice = extract_2d_slice(resampled_data, center, axis=2) # Axial (z-axis) | |
coronal_slice = extract_2d_slice(resampled_data, center, axis=1) # Coronal (y-axis) | |
sagittal_slice = extract_2d_slice(resampled_data, center, axis=0) # Sagittal (x-axis) | |
# Apply rotations to each slice | |
axial_slice = np.rot90(axial_slice, k=-1) # 90 degrees clockwise | |
coronal_slice = np.rot90(coronal_slice, k=1) # 90 degrees anticlockwise | |
coronal_slice = np.rot90(coronal_slice, k=2) # Additional 180 degrees | |
sagittal_slice = np.rot90(sagittal_slice, k=1) # 90 degrees anticlockwise | |
sagittal_slice = np.rot90(sagittal_slice, k=2) # Additional 180 degrees | |
# Create subplots | |
fig, axes = plt.subplots(1, 3, figsize=(12, 4)) | |
# Plot each padded and rotated slice | |
axes[0].imshow(axial_slice, cmap="gray", origin="lower") | |
axes[0].axis("off") | |
axes[1].imshow(coronal_slice, cmap="gray", origin="lower") | |
axes[1].axis("off") | |
axes[2].imshow(sagittal_slice, cmap="gray", origin="lower") | |
axes[2].axis("off") | |
# Save the figure | |
plt.tight_layout() | |
plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0) | |
plt.close() | |
# Function to run nnUNet inference | |
# Decorate the function to allocate GPU for its execution | |
def run_nnunet_predict(nifti_file): | |
# Prepare directories | |
os.makedirs(INPUT_DIR, exist_ok=True) | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
# Extract the original filename without the extension | |
original_filename = os.path.basename(nifti_file.name) | |
base_filename = original_filename.replace(".nii.gz", "") | |
# Save the uploaded file to the input directory | |
input_path = os.path.join(INPUT_DIR, "image_0000.nii.gz") | |
os.rename(nifti_file.name, input_path) # Move the uploaded file to the expected input location | |
# Debugging: List files in the /tmp/input directory | |
print("Files in /tmp/input:") | |
print(os.listdir(INPUT_DIR)) | |
# Set environment variables for nnUNet | |
os.environ["nnUNet_results"] = MODEL_DIR | |
# Construct and run the nnUNetv2_predict command | |
command = [ | |
"nnUNetv2_predict", | |
"-i", INPUT_DIR, | |
"-o", OUTPUT_DIR, | |
"-d", "004", # Dataset ID | |
"-c", "3d_fullres", # Configuration | |
"-tr", "nnUNetTrainer_8000epochs", | |
"-device", "cuda" # Explicitly use GPU | |
] | |
print("Files in /tmp/output:") | |
print(os.listdir(OUTPUT_DIR)) | |
try: | |
subprocess.run(command, check=True) | |
# Rename the output file to match the original input filename | |
output_file = os.path.join(OUTPUT_DIR, "image.nii.gz") | |
new_output_file = os.path.join(OUTPUT_DIR, f"{base_filename}_LesionMask.nii.gz") | |
if os.path.exists(output_file): | |
os.rename(output_file, new_output_file) | |
# Compute center of mass for the input image | |
img = nib.load(input_path) | |
data = img.get_fdata() | |
affine = img.affine | |
resampled_data, _ = resample_to_isotropic(data, affine, target_spacing=1.0) | |
com = center_of_mass(resampled_data > 0) # Center of mass | |
center = np.round(com).astype(int) # Round to integer | |
# Extract and save 2D slices | |
input_slice_path = os.path.join(OUTPUT_DIR, f"{base_filename}_input_slice.png") | |
output_slice_path = os.path.join(OUTPUT_DIR, f"{base_filename}_output_slice.png") | |
extract_middle_slices(input_path, input_slice_path, center=center) | |
extract_middle_slices(new_output_file, output_slice_path, center=center) | |
# Return paths for the Gradio interface | |
return new_output_file, input_slice_path, output_slice_path | |
else: | |
return "Error: Output file not found." | |
except subprocess.CalledProcessError as e: | |
return f"Error: {e}" | |
# Gradio interface with adjusted layout | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# 🔥 FLAMeS: FLAIR Lesion Segmentation for Multiple Sclerosis | |
Upload a skull-stripped FLAIR brain MRI in NIfTI (.nii.gz) format to generate a binary segmentation of multiple sclerosis lesions. | |
FLAMeS is based on the nnUNet framework<sup>2</sup> and was trained on 668 MRI scans acquired using Siemens, GE, and Philips 1.5T and 3T scanners<sup>1</sup>. | |
For skull-stripping, we suggest using [SynthStrip](https://surfer.nmr.mgh.harvard.edu/docs/synthstrip/) with the `--no-csf` flag for optimal results. | |
Inference takes approximately 1 minute per MRI, with processing limited to one scan at a time due to Hugging Face's zero-GPU usage constraints. To process multiple cases simultaneously, download [FLAMeS's model](https://huggingface.co/FrancescoLR/FLAMeS-model) and run it locally using your own GPU or CPU setup. | |
**Disclaimer:** Uploaded data is stored temporarily, no one has access to it, and it is deleted when the app is closed. For details, see [Gradio's file access guide](https://www.gradio.app/main/guides/file-access). Human subjects data should only be uploaded for processing if permitted by your institution's human subjects protection office. | |
This is a research tool and is not intended for clinical use. Clinical decisions should not be based on the outputs of this tool. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
flair_input = gr.File(label="Upload a FLAIR Image (.nii.gz)") | |
submit_button = gr.Button("Submit") | |
with gr.Column(scale=2): | |
seg_output = gr.File(label="Download the Lesion Segmentation Mask") | |
input_img = gr.Image(label="Input: FLAIR image") | |
output_img = gr.Image(label="Output: Lesion Mask") | |
gr.Markdown(""" | |
**If you find this tool useful, please consider citing:** | |
1. A Deep Learning-Based Pipeline for Longitudinal White Matter Lesion Segmentation Using Diverse FLAIR Images | |
F. La Rosa, J. Dos Santos Silva, W. A. Mullins, H. Greenspan, J. F. Sumowski, D. S. Reich, & E. S. Beck. | |
*ACTRIMS Forum 2023. Multiple Sclerosis Journal.* 2023;29(2_suppl):18-242. | |
DOI: [10.1177/13524585231169437](https://doi.org/10.1177/13524585231169437) | |
2. nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation | |
F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, & K. H. Maier-Hein. | |
*Nature Methods.* 2021;18(2):203-211. | |
DOI: [10.1038/s41592-020-01008-z](https://www.nature.com/articles/s41592-020-01008-z) | |
""") | |
submit_button.click( | |
fn=run_nnunet_predict, | |
inputs=[flair_input], | |
outputs=[seg_output, input_img, output_img] | |
) | |
# Debugging GPU environment | |
if torch.cuda.is_available(): | |
print(f"GPU is available: {torch.cuda.get_device_name(0)}") | |
else: | |
print("No GPU available. Falling back to CPU.") | |
os.system("nvidia-smi") | |
download_model() | |
if __name__ == "__main__": | |
demo.launch(share=True) | |