Fralet commited on
Commit
aa53297
·
verified ·
1 Parent(s): 04bbd33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -18
app.py CHANGED
@@ -1,24 +1,19 @@
1
  import os
2
  import gradio as gr
 
3
  from transformers import pipeline
4
  import huggingface_hub
5
 
6
-
 
 
7
 
8
  # Load the pre-trained model
9
  classifier = pipeline("text-classification", model="ICILS/xlm-r-icils-ilo", device=0)
10
 
11
  # Define the prediction function
 
12
  def classify_text(text):
13
- """
14
- Classify the input text into occupational categories using a pre-trained model.
15
-
16
- Args:
17
- text (str): Job description text.
18
-
19
- Returns:
20
- tuple: (label, score) - The classification label and the associated confidence score.
21
- """
22
  result = classifier(text)[0]
23
  label = result['label']
24
  score = result['score']
@@ -27,15 +22,11 @@ def classify_text(text):
27
  # Create the Gradio interface
28
  demo = gr.Interface(
29
  fn=classify_text,
30
- inputs=gr.Textbox(lines=2, label="Job Description Text", placeholder="Enter a job description..."),
31
  outputs=[gr.Textbox(label="ISCO-08 Label"), gr.Number(label="Score")],
32
- title="XLM-R ISCO Classification",
33
- description=(
34
- "Classify job descriptions into occupational categories using a pre-trained XLM-R-ISCO model "
35
- "from Hugging Face Spaces."
36
- ),
37
  )
38
 
39
- # Run the Gradio app
40
  if __name__ == "__main__":
41
- demo.launch()
 
1
  import os
2
  import gradio as gr
3
+ import spaces
4
  from transformers import pipeline
5
  import huggingface_hub
6
 
7
+ # Login to Hugging Face Hub
8
+ token = os.getenv("HF_TOKEN")
9
+ huggingface_hub.login(token=token)
10
 
11
  # Load the pre-trained model
12
  classifier = pipeline("text-classification", model="ICILS/xlm-r-icils-ilo", device=0)
13
 
14
  # Define the prediction function
15
+ @spaces.GPU
16
  def classify_text(text):
 
 
 
 
 
 
 
 
 
17
  result = classifier(text)[0]
18
  label = result['label']
19
  score = result['score']
 
22
  # Create the Gradio interface
23
  demo = gr.Interface(
24
  fn=classify_text,
25
+ inputs=gr.Textbox(lines=2, label="Job description text", placeholder="Enter a job description..."),
26
  outputs=[gr.Textbox(label="ISCO-08 Label"), gr.Number(label="Score")],
27
+ title="XLM-R ISCO classification with ZeroGPU",
28
+ description="Classify occupations using a pre-trained XLM-R-ISCO model on Hugging Face Spaces with ZeroGPU"
 
 
 
29
  )
30
 
 
31
  if __name__ == "__main__":
32
+ demo.launch()