Fralet commited on
Commit
6297210
·
verified ·
1 Parent(s): a1a24b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -36,6 +36,7 @@ def preprocess_text(text):
36
  question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust range if needed
37
  data['combined_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
38
  data['processed_text'] = data['combined_text'].apply(preprocess_text)
 
39
 
40
  # Prediction confidence threshold
41
  confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
@@ -45,10 +46,10 @@ if st.button("Predict Personality"):
45
  def get_predictions(row):
46
  custom_labels = [row['MAX1'], row['MAX2'], row['MAX3']] # Get labels from each row
47
  processed_text = row['processed_text']
48
- result = classifier(processed_text, custom_labels)
49
  highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first
50
  return highest_score_label
51
 
52
  # Apply predictions across all rows
53
  data['Predicted'] = data.apply(get_predictions, axis=1)
54
- st.dataframe(data[['True_label', 'Predicted']])
 
36
  question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust range if needed
37
  data['combined_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
38
  data['processed_text'] = data['combined_text'].apply(preprocess_text)
39
+ labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
40
 
41
  # Prediction confidence threshold
42
  confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
 
46
  def get_predictions(row):
47
  custom_labels = [row['MAX1'], row['MAX2'], row['MAX3']] # Get labels from each row
48
  processed_text = row['processed_text']
49
+ result = classifier(processed_text, labels)
50
  highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first
51
  return highest_score_label
52
 
53
  # Apply predictions across all rows
54
  data['Predicted'] = data.apply(get_predictions, axis=1)
55
+ st.dataframe(data[['True_label','MAX1','MAX2','MAX3', 'Predicted']])