|
import streamlit as st |
|
from datasets import load_dataset |
|
import pandas as pd |
|
|
|
from datasets import load_dataset |
|
dataset_dict = load_dataset('HUPD/hupd', |
|
name='sample', |
|
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather", |
|
icpr_label=None, |
|
train_filing_start_date='2016-01-01', |
|
train_filing_end_date='2016-01-31', |
|
val_filing_start_date='2017-01-22', |
|
val_filing_end_date='2017-01-31', |
|
) |
|
|
|
|
|
|
|
df = pd.DataFrame.from_dict(dataset_dict["train"]) |
|
df = pd.DataFrame(df,columns =['patent_number','decision', 'abstract', 'claims','filing_date']) |
|
|
|
PAN = df['patent_number'].drop_duplicates() |
|
make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN) |
|
|
|
form = st.form(key='patent-form') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
abstract = df["abstract"].loc[df["patent_number"] == make_choice] |
|
st.write(abstract.to_html(), unsafe_allow_html=True) |
|
|
|
|
|
|
|
claims = df["claims"].loc[df["patent_number"] == make_choice] |
|
st.markdown(f"Publication abstract is **{claims}** π") |
|
|
|
|