LlamaGen / models /gpt.py
ShoufaChen's picture
init
4d20c2f
raw
history blame
No virus
19.5 kB
# Modified from:
# VQGAN: https://github.com/CompVis/taming-transformers/blob/master/taming/modules/transformer/mingpt.py
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py
# llama: https://github.com/facebookresearch/llama/blob/main/llama/model.py
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
from dataclasses import dataclass
from typing import Optional, List
import torch
import torch.nn as nn
from torch.nn import functional as F
def find_multiple(n: int, k: int):
if n % k == 0:
return n
return n + k - (n % k)
@dataclass
class ModelArgs:
dim: int = 4096
n_layer: int = 32
n_head: int = 32
n_kv_head: Optional[int] = None
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None
rope_base: float = 10000
norm_eps: float = 1e-5
initializer_range: float = 0.02
token_dropout_p: float = 0.1
attn_dropout_p: float = 0.0
resid_dropout_p: float = 0.1
ffn_dropout_p: float = 0.1
drop_path_rate: float = 0.0
num_classes: int = 1000
caption_dim: int = 2048
class_dropout_prob: float = 0.1
model_type: str = 'c2i'
vocab_size: int = 16384
cls_token_num: int = 1
block_size: int = 256
max_batch_size: int = 32
max_seq_len: int = 2048
#################################################################################
# Embedding Layers for Class Labels #
#################################################################################
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels).unsqueeze(1)
return embeddings
#################################################################################
# Embedding Layers for Text Feature #
#################################################################################
class CaptionEmbedder(nn.Module):
"""
Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120):
super().__init__()
self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size)
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
embeddings = self.cap_proj(caption)
return embeddings
class MLP(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
self.act = nn.GELU(approximate='tanh')
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
#################################################################################
# GPT Model #
#################################################################################
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
hidden_dim = 4 * config.dim
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if config.ffn_dim_multiplier is not None:
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim)
hidden_dim = find_multiple(hidden_dim, config.multiple_of)
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False)
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False)
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p)
def forward(self, x):
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class KVCache(nn.Module):
def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype):
super().__init__()
cache_shape = (max_batch_size, n_head, max_seq_length, head_dim)
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype))
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype))
def update(self, input_pos, k_val, v_val):
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[0] == k_val.shape[2]
k_out = self.k_cache
v_out = self.v_cache
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
return k_out, v_out
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
assert config.dim % config.n_head == 0
self.dim = config.dim
self.head_dim = config.dim // config.n_head
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.kv_cache = None
# regularization
self.attn_dropout_p = config.attn_dropout_p
self.resid_dropout = nn.Dropout(config.resid_dropout_p)
def forward(
self, x: torch.Tensor, freqs_cis: torch.Tensor = None,
input_pos: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None
):
bsz, seqlen, _ = x.shape
kv_size = self.n_kv_head * self.head_dim
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim)
xq = apply_rotary_emb(xq, freqs_cis)
xk = apply_rotary_emb(xk, freqs_cis)
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
if self.kv_cache is not None:
keys, values = self.kv_cache.update(input_pos, xk, xv)
else:
keys, values = xk, xv
keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1)
output = F.scaled_dot_product_attention(
xq, keys, values,
attn_mask=mask,
is_causal=True if mask is None else False, # is_causal=False is for KV cache
dropout_p=self.attn_dropout_p if self.training else 0)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
output = self.resid_dropout(self.wo(output))
return output
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs, drop_path: float):
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
def forward(
self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None):
h = x + self.attention(self.attention_norm(x), freqs_cis, start_pos, mask)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.n_layer = config.n_layer
self.block_size = config.block_size
self.num_classes = config.num_classes
self.model_type = config.model_type
self.cls_token_num = config.cls_token_num
if self.model_type == 'c2i':
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob)
elif self.model_type == 't2i':
self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob)
else:
raise Exception("please check model type")
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.tok_dropout = nn.Dropout(config.token_dropout_p)
# transformer blocks
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)]
self.layers = torch.nn.ModuleList()
for layer_id in range(config.n_layer):
self.layers.append(TransformerBlock(config, dpr[layer_id]))
# output layer
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
# 2d rotary pos embedding
grid_size = int(self.block_size ** 0.5)
assert grid_size * grid_size == self.block_size
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
# KVCache
self.max_batch_size = -1
self.max_seq_length = -1
self.initialize_weights()
def initialize_weights(self):
# Initialize nn.Linear and nn.Embedding
self.apply(self._init_weights)
# Zero-out output layers:
nn.init.constant_(self.output.weight, 0)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
def setup_caches(self, max_batch_size, max_seq_length, dtype):
# if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size:
# return
head_dim = self.config.dim // self.config.n_head
max_seq_length = find_multiple(max_seq_length, 8)
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
for b in self.layers:
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype)
causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))
self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1)
grid_size = int(self.config.block_size ** 0.5)
assert grid_size * grid_size == self.block_size
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num)
def forward(
self,
idx: torch.Tensor,
cond_idx: torch.Tensor, # cond_idx_or_embed
input_pos: Optional[torch.Tensor] = None,
targets: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
valid: Optional[torch.Tensor] = None,
):
if idx is not None and cond_idx is not None: # training or naive inference
cond_embeddings = self.cls_embedding(cond_idx, train=self.training)[:,:self.cls_token_num]
token_embeddings = self.tok_embeddings(idx)
token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1)
h = self.tok_dropout(token_embeddings)
self.freqs_cis = self.freqs_cis.to(h.device)
else:
if cond_idx is not None: # prefill in inference
token_embeddings = self.cls_embedding(cond_idx, train=self.training)[:,:self.cls_token_num]
else: # decode_n_tokens(kv cache) in inference
token_embeddings = self.tok_embeddings(idx)
bs = token_embeddings.shape[0]
mask = self.causal_mask[:bs, None, input_pos]
h = self.tok_dropout(token_embeddings)
self.freqs_cis = self.freqs_cis
if self.training:
freqs_cis = self.freqs_cis[:token_embeddings.shape[1]]
else:
freqs_cis = self.freqs_cis[input_pos]
# transformer blocks
for layer in self.layers:
h = layer(h, freqs_cis, input_pos, mask)
# output layers
h = self.norm(h)
logits = self.output(h).float()
if self.training:
logits = logits[:, self.cls_token_num - 1:].contiguous()
# if we are given some desired targets also calculate the loss
loss = None
if valid is not None:
loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1)
loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1)
elif targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
return list(self.layers)
#################################################################################
# Rotary Positional Embedding Functions #
#################################################################################
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120):
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2)
return cond_cache
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120):
# split the dimension into half, one for x and one for y
half_dim = n_elem // 2
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim))
t = torch.arange(grid_size, device=freqs.device)
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2)
freqs_grid = torch.concat([
freqs[:, None, :].expand(-1, grid_size, -1),
freqs[None, :, :].expand(grid_size, -1, -1),
], dim=-1) # (grid_size, grid_size, head_dim // 2)
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2)
cache = cache_grid.flatten(0, 1)
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2)
return cond_cache
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
# x: (bs, seq_len, n_head, head_dim)
# freqs_cis (seq_len, head_dim // 2, 2)
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2)
x_out2 = torch.stack([
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
], dim=-1)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
#################################################################################
# GPT Configs #
#################################################################################
### text-conditional
def GPT_7B(**kwargs):
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B
def GPT_3B(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B
def GPT_1B(**kwargs):
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B
### class-conditional
def GPT_XXXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B
def GPT_XXL(**kwargs):
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B
def GPT_XL(**kwargs):
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M
def GPT_L(**kwargs):
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M
def GPT_B(**kwargs):
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M
GPT_models = {
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL,
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B,
}