whisper-api / main.py
mkozak's picture
maybe try not to make typos
ec6cace unverified
import torch
import requests
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
from pydantic import BaseModel
from fastapi import FastAPI
class URLPayload(BaseModel):
url: str
app = FastAPI()
def process_audio(url: str):
response = requests.get(url)
with open("/data/audio.mp3", mode="wb") as file:
file.write(response.content)
device = "cuda"
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=8192,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch.float16,
device=device
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
whisper_result = pipe("/data/audio.mp3", generate_kwargs={"language": "polish"})
return whisper_result
@app.post("/process/")
async def process_audio_endpoint(payload: URLPayload):
result = process_audio(payload.url)
return result