Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,14 +23,6 @@ if not os.path.exists(movenet_model_path):
|
|
| 23 |
else:
|
| 24 |
movenet_model = tf.saved_model.load(movenet_model_path)
|
| 25 |
|
| 26 |
-
# Load BLIP model
|
| 27 |
-
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base')
|
| 28 |
-
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
|
| 29 |
-
|
| 30 |
-
# Load CLIP model
|
| 31 |
-
clip_model = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
| 32 |
-
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
|
| 33 |
-
|
| 34 |
# Keypoint dictionary for reference
|
| 35 |
KEYPOINT_DICT = {
|
| 36 |
'nose': 0,
|
|
@@ -60,13 +52,13 @@ def process_video():
|
|
| 60 |
# Clear previous cache
|
| 61 |
gc.collect()
|
| 62 |
torch.cuda.empty_cache()
|
|
|
|
| 63 |
# Get the video URL from the request
|
| 64 |
video_url = request.json.get('videoURL')
|
| 65 |
height = request.json.get('height')
|
| 66 |
weight = request.json.get('weight')
|
| 67 |
wingspan = request.json.get('wingspan')
|
| 68 |
|
| 69 |
-
|
| 70 |
if not video_url:
|
| 71 |
return jsonify({"error": "No video URL provided"}), 400
|
| 72 |
|
|
@@ -99,16 +91,7 @@ def process_video():
|
|
| 99 |
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
|
| 100 |
movenet_results = []
|
| 101 |
stances = []
|
| 102 |
-
hip_rotations = []
|
| 103 |
-
arm_extensions = []
|
| 104 |
-
stepping_jabs = []
|
| 105 |
guard_up = []
|
| 106 |
-
hand_returned = []
|
| 107 |
-
hips_width_apart = []
|
| 108 |
-
leg_angle_correct = []
|
| 109 |
-
punch_started = False
|
| 110 |
-
initial_left_wrist = None
|
| 111 |
-
initial_right_wrist = None
|
| 112 |
|
| 113 |
for frame_index, frame in enumerate(frames):
|
| 114 |
input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 256, 256)
|
|
@@ -139,26 +122,46 @@ def process_video():
|
|
| 139 |
right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
|
| 140 |
guard_up.append(left_hand_near_head and right_hand_near_head)
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
# Generate captions for all 60 frames using BLIP
|
| 143 |
captions = []
|
|
|
|
|
|
|
|
|
|
| 144 |
for frame in frames:
|
| 145 |
-
inputs = blip_processor(images=frame, return_tensors="pt")
|
| 146 |
with torch.no_grad():
|
| 147 |
caption = blip_model.generate(**inputs)
|
| 148 |
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
|
| 151 |
clip_results = []
|
|
|
|
|
|
|
|
|
|
| 152 |
for i, frame in enumerate(frames):
|
| 153 |
stance = stances[i]
|
| 154 |
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm."
|
| 155 |
-
text_inputs = clip_processor(text=[prompt], return_tensors="pt")
|
| 156 |
-
image_inputs = clip_processor(images=frame, return_tensors="pt")
|
| 157 |
with torch.no_grad():
|
| 158 |
image_features = clip_model.get_image_features(**image_inputs)
|
| 159 |
text_features = clip_model.get_text_features(**text_inputs)
|
| 160 |
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
|
| 161 |
clip_results.append(similarity.item())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
# Calculate score based on CLIP results and BLIP captions
|
| 164 |
avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
|
|
|
|
| 23 |
else:
|
| 24 |
movenet_model = tf.saved_model.load(movenet_model_path)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# Keypoint dictionary for reference
|
| 27 |
KEYPOINT_DICT = {
|
| 28 |
'nose': 0,
|
|
|
|
| 52 |
# Clear previous cache
|
| 53 |
gc.collect()
|
| 54 |
torch.cuda.empty_cache()
|
| 55 |
+
|
| 56 |
# Get the video URL from the request
|
| 57 |
video_url = request.json.get('videoURL')
|
| 58 |
height = request.json.get('height')
|
| 59 |
weight = request.json.get('weight')
|
| 60 |
wingspan = request.json.get('wingspan')
|
| 61 |
|
|
|
|
| 62 |
if not video_url:
|
| 63 |
return jsonify({"error": "No video URL provided"}), 400
|
| 64 |
|
|
|
|
| 91 |
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
|
| 92 |
movenet_results = []
|
| 93 |
stances = []
|
|
|
|
|
|
|
|
|
|
| 94 |
guard_up = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
for frame_index, frame in enumerate(frames):
|
| 97 |
input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 256, 256)
|
|
|
|
| 122 |
right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
|
| 123 |
guard_up.append(left_hand_near_head and right_hand_near_head)
|
| 124 |
|
| 125 |
+
# Free up memory used by MoveNet
|
| 126 |
+
del movenet_model
|
| 127 |
+
gc.collect()
|
| 128 |
+
|
| 129 |
# Generate captions for all 60 frames using BLIP
|
| 130 |
captions = []
|
| 131 |
+
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to('cuda')
|
| 132 |
+
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
|
| 133 |
+
|
| 134 |
for frame in frames:
|
| 135 |
+
inputs = blip_processor(images=frame, return_tensors="pt").to('cuda')
|
| 136 |
with torch.no_grad():
|
| 137 |
caption = blip_model.generate(**inputs)
|
| 138 |
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
|
| 139 |
+
|
| 140 |
+
# Free up memory used by BLIP
|
| 141 |
+
del blip_model, blip_processor
|
| 142 |
+
torch.cuda.empty_cache()
|
| 143 |
+
gc.collect()
|
| 144 |
|
| 145 |
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
|
| 146 |
clip_results = []
|
| 147 |
+
clip_model = CLIPModel.from_pretrained('openai/clip-vit-base-patch32').to('cuda')
|
| 148 |
+
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
|
| 149 |
+
|
| 150 |
for i, frame in enumerate(frames):
|
| 151 |
stance = stances[i]
|
| 152 |
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm."
|
| 153 |
+
text_inputs = clip_processor(text=[prompt], return_tensors="pt").to('cuda')
|
| 154 |
+
image_inputs = clip_processor(images=frame, return_tensors="pt").to('cuda')
|
| 155 |
with torch.no_grad():
|
| 156 |
image_features = clip_model.get_image_features(**image_inputs)
|
| 157 |
text_features = clip_model.get_text_features(**text_inputs)
|
| 158 |
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
|
| 159 |
clip_results.append(similarity.item())
|
| 160 |
+
|
| 161 |
+
# Free up memory used by CLIP
|
| 162 |
+
del clip_model, clip_processor
|
| 163 |
+
torch.cuda.empty_cache()
|
| 164 |
+
gc.collect()
|
| 165 |
|
| 166 |
# Calculate score based on CLIP results and BLIP captions
|
| 167 |
avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
|