JulianPhillips's picture
Update app.py
5e7e8fb verified
from flask import Flask, request, jsonify
import cv2
import numpy as np
import tensorflow as tf
from transformers import BlipProcessor, BlipForConditionalGeneration, CLIPProcessor, CLIPModel
import torch
import os
import requests
from tempfile import NamedTemporaryFile
import gc
import tensorflow_hub as hub
import logging
from PIL import Image
# Configure logging
logging.basicConfig(level=logging.ERROR)
# Ensure that Hugging Face uses the appropriate cache directory
os.environ['TRANSFORMERS_CACHE'] = '/app/cache'
os.environ['HF_HOME'] = '/app/cache'
movenet_model_path = '/models/movenet/movenet_lightning'
# Keypoint dictionary for reference
KEYPOINT_DICT = {
'nose': 0,
'left_eye': 1,
'right_eye': 2,
'left_ear': 3,
'right_ear': 4,
'left_shoulder': 5,
'right_shoulder': 6,
'left_elbow': 7,
'right_elbow': 8,
'left_wrist': 9,
'right_wrist': 10,
'left_hip': 11,
'right_hip': 12,
'left_knee': 13,
'right_knee': 14,
'left_ankle': 15,
'right_ankle': 16
}
app = Flask(__name__)
@app.route('/process_video', methods=['POST'])
def process_video():
try:
# Clear previous cache
gc.collect()
torch.cuda.empty_cache()
# Get the video URL from the request
video_url = request.json.get('videoURL')
height = request.json.get('height')
weight = request.json.get('weight')
wingspan = request.json.get('wingspan')
if not video_url:
return jsonify({"error": "No video URL provided"}), 400
if not all([height, weight, wingspan]):
return jsonify({"error": "Height, weight, and wingspan are required"}), 400
# Download the video from the S3 URL
with NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
response = requests.get(video_url)
if response.status_code != 200:
return jsonify({"error": "Failed to download video from the provided URL"}), 400
temp_video_file.write(response.content)
video_path = temp_video_file.name
# Open the video file
cap = cv2.VideoCapture(video_path)
frames = []
# Extract 60 frames from the video
success, frame = cap.read()
frame_count = 0
while success and frame_count < 60:
frames.append(frame)
success, frame = cap.read()
frame_count += 1
cap.release()
os.remove(video_path)
# Check if the model path exists and load MoveNet model
if not os.path.exists(movenet_model_path):
# Download the model from TensorFlow Hub
movenet_model = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4")
else:
movenet_model = tf.saved_model.load(movenet_model_path)
# Process each frame with MoveNet (to get 3D keypoints and detect stance)
movenet_results = []
stances = []
guard_up = []
for frame_index, frame in enumerate(frames):
input_tensor = tf.image.resize_with_pad(tf.convert_to_tensor(frame, dtype=tf.uint8), 256, 256)
input_tensor = tf.cast(input_tensor, dtype=tf.int32) # Cast to int32 instead of float32
input_tensor = tf.expand_dims(input_tensor, axis=0)
keypoints = movenet_model.signatures['serving_default'](input_tensor)
keypoints_3d = keypoints['output_0'][0].numpy().tolist() # Assuming the model returns 3D keypoints
movenet_results.append(keypoints_3d)
# Detect stance based on keypoints (using ankles and wrists)
left_ankle = keypoints_3d[KEYPOINT_DICT['left_ankle']]
right_ankle = keypoints_3d[KEYPOINT_DICT['right_ankle']]
left_wrist = keypoints_3d[KEYPOINT_DICT['left_wrist']]
right_wrist = keypoints_3d[KEYPOINT_DICT['right_wrist']]
if right_ankle[0] < left_ankle[0] and right_wrist[0] < left_wrist[0]:
stance = "orthodox"
elif left_ankle[0] < right_ankle[0] and left_wrist[0] < right_wrist[0]:
stance = "southpaw"
else:
stance = "unknown"
stances.append(stance)
# Detect if guard is up (both hands near eye level at the side of the head)
nose = keypoints_3d[KEYPOINT_DICT['nose']]
guard_threshold = 0.1 # Threshold distance to consider hands near the head
left_hand_near_head = abs(left_wrist[1] - nose[1]) < guard_threshold
right_hand_near_head = abs(right_wrist[1] - nose[1]) < guard_threshold
guard_up.append(left_hand_near_head and right_hand_near_head)
# Free up memory used by MoveNet
del movenet_model
gc.collect()
# Generate captions for all 60 frames using BLIP
captions = []
blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to('cuda' if torch.cuda.is_available() else 'cpu')
blip_processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
for frame in frames:
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Convert frame to PIL image
inputs = blip_processor(images=frame_pil, return_tensors="pt").to('cuda' if torch.cuda.is_available() else 'cpu')
with torch.no_grad():
caption = blip_model.generate(**inputs)
captions.append(blip_processor.decode(caption[0], skip_special_tokens=True))
# Free up memory used by BLIP
del blip_model, blip_processor
torch.cuda.empty_cache()
gc.collect()
# Use CLIP to assess the similarity of frames to a Muay Thai jab prompt, including stance
clip_results = []
clip_model = CLIPModel.from_pretrained('openai/clip-vit-base-patch32').to('cuda' if torch.cuda.is_available() else 'cpu')
clip_processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
for i, frame in enumerate(frames):
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Convert frame to PIL image
stance = stances[i]
prompt = f"A person performing a Muay Thai jab in {stance} stance at {height} in in height, {weight} lbs in weight, and a wingspan of {wingspan} cm."
text_inputs = clip_processor(text=[prompt], return_tensors="pt").to('cuda' if torch.cuda.is_available() else 'cpu')
image_inputs = clip_processor(images=frame_pil, return_tensors="pt").to('cuda' if torch.cuda.is_available() else 'cpu')
with torch.no_grad():
image_features = clip_model.get_image_features(**image_inputs)
text_features = clip_model.get_text_features(**text_inputs)
similarity = torch.nn.functional.cosine_similarity(image_features, text_features)
clip_results.append(similarity.item())
# Free up memory used by CLIP
del clip_model, clip_processor
torch.cuda.empty_cache()
gc.collect()
# Calculate score based on CLIP results and BLIP captions
avg_clip_similarity = sum(clip_results) / len(clip_results) if clip_results else 0
guard_score = sum(guard_up) / len(guard_up) if guard_up else 0
overall_score = (avg_clip_similarity + guard_score) / 2
# Scale the overall score to a range of 0 - 10
overall_score = max(0, min(overall_score * 10, 10))
# Return combined results
response = {
"movenet_results": movenet_results,
"blip_captions": captions,
"clip_similarities": clip_results,
"stances": stances,
"overall_score": overall_score,
"guard_score": guard_score
}
return jsonify(response)
except Exception as e:
logging.error(str(e))
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
# Clear any cache before starting the Flask server
gc.collect()
torch.cuda.empty_cache()
# Start the Flask app
app.run(host='0.0.0.0', port=7860)