Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import CLIPTextModel | |
from typing import Any, Callable, Dict, Optional, Tuple, Union, List | |
from transformers.modeling_outputs import BaseModelOutputWithPooling | |
from transformers.models.clip.modeling_clip import _make_causal_mask, _expand_mask | |
class CLIPTextModelWrapper(CLIPTextModel): | |
# Adapted from https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/clip/modeling_clip.py#L812 | |
# Modified to accept precomputed token embeddings "input_token_embs" as input or calculate them from input_ids and return them. | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
input_token_embs: Optional[torch.Tensor] = None, | |
return_token_embs: Optional[bool] = False, | |
) -> Union[Tuple, torch.Tensor, BaseModelOutputWithPooling]: | |
if return_token_embs: | |
return self.text_model.embeddings.token_embedding(input_ids) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_attentions = output_attentions if output_attentions is not None else self.text_model.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.text_model.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.text_model.config.use_return_dict | |
if input_ids is None: | |
raise ValueError("You have to specify input_ids") | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
hidden_states = self.text_model.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=input_token_embs) | |
# CLIP's text model uses causal mask, prepare it here. | |
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 | |
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device) | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _expand_mask(attention_mask, hidden_states.dtype) | |
encoder_outputs = self.text_model.encoder( | |
inputs_embeds=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.text_model.final_layer_norm(last_hidden_state) | |
if self.text_model.eos_token_id == 2: | |
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. | |
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added | |
# ------------------------------------------------------------ | |
# text_embeds.shape = [batch_size, sequence_length, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 | |
pooled_output = last_hidden_state[ | |
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), | |
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), | |
] | |
else: | |
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) | |
pooled_output = last_hidden_state[ | |
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), | |
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) | |
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.text_model.eos_token_id) | |
.int() | |
.argmax(dim=-1), | |
] | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) |