SpeechCloning / app.py
Flux9665's picture
switch to oracle style demo rather than re-running everything everytime, because huggingface gives a lot less compute than it used to
0d40f57
raw
history blame
16.9 kB
import os
import gradio as gr
import numpy as np
import soundfile
import soundfile as sf
import torch
from tqdm import tqdm
os.system("git clone --branch v2.3 https://github.com/DigitalPhonetics/IMS-Toucan.git toucan_codebase")
os.system("mv toucan_codebase/* .")
from run_model_downloader import download_models
download_models()
from Preprocessing.TextFrontend import ArticulatoryCombinedTextFrontend
from Preprocessing.AudioPreprocessor import AudioPreprocessor
from TrainingInterfaces.Text_to_Spectrogram.AutoAligner.Aligner import Aligner
from TrainingInterfaces.Text_to_Spectrogram.FastSpeech2.DurationCalculator import DurationCalculator
from InferenceInterfaces.UtteranceCloner import UtteranceCloner
from Preprocessing.articulatory_features import get_feature_to_index_lookup
def float2pcm(sig, dtype='int16'):
"""
https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182
"""
sig = np.asarray(sig)
if sig.dtype.kind != 'f':
raise TypeError("'sig' must be a float array")
dtype = np.dtype(dtype)
if dtype.kind not in 'iu':
raise TypeError("'dtype' must be an integer type")
i = np.iinfo(dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype)
class TTS_Interface:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.utterance_cloner = UtteranceCloner(model_id="Meta", device=self.device)
self.speaker_path_lookup = {
"Voice 1": "reference_audios/voice_1.flac",
"Voice 2": "reference_audios/voice_2.wav",
"Voice 3": "reference_audios/voice_3.wav",
}
self.acoustic_model = Aligner()
self.acoustic_model.load_state_dict(torch.load("Models/Aligner/aligner.pt", map_location='cpu')["asr_model"])
self.acoustic_model = self.acoustic_model.to(self.device)
self.dc = DurationCalculator(reduction_factor=1)
self.tf = ArticulatoryCombinedTextFrontend(language="en")
example_audio, sr = soundfile.read("reference_audios/clone_me_5.wav")
self.ap = AudioPreprocessor(input_sr=sr, output_sr=16000, )
## finetune aligner
steps = 10
tokens = list() # we need an ID sequence for training rather than a sequence of phonological features
for vector in self.tf.string_to_tensor(
"Betty Botter bought some butter, but she said the butters bitter. If I put it in my batter, it will make my batter bitter. But a bit of better butter will make my batter better."):
if vector[get_feature_to_index_lookup()["word-boundary"]] == 0:
# we don't include word boundaries when performing alignment, since they are not always present in audio.
for phone in self.tf.phone_to_vector:
if vector.numpy().tolist()[13:] == self.tf.phone_to_vector[phone][13:]:
# the first 12 dimensions are for modifiers, so we ignore those when trying to find the phoneme in the ID lookup
tokens.append(self.tf.phone_to_id[phone])
# this is terribly inefficient, but it's fine
break
tokens = torch.LongTensor(tokens).squeeze().to(self.device)
tokens_len = torch.LongTensor([len(tokens)]).to(self.device)
mel = self.ap.audio_to_mel_spec_tensor(example_audio, normalize=True).transpose(0, 1).unsqueeze(0).to(self.device)
mel.requires_grad = True
mel_len = torch.LongTensor([len(mel[0])]).to(self.device)
# actual fine-tuning starts here
optim_asr = torch.optim.SGD(self.acoustic_model.parameters(), lr=0.1)
self.acoustic_model.train()
for _ in tqdm(list(range(steps))):
pred = self.acoustic_model(mel)
loss = self.acoustic_model.ctc_loss(pred.transpose(0, 1).log_softmax(2), tokens, mel_len, tokens_len)
optim_asr.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.acoustic_model.parameters(), 1.0)
optim_asr.step()
self.acoustic_model.eval()
## done finetuning
reference_audio = "reference_audios/clone_me_5.wav"
prompt = "Betty Botter bought some butter, but she said the butters bitter. If I put it in my batter, it will make my batter bitter. But a bit of better butter will make my batter better."
text_list = prompt.replace(".", ".|").replace("?", "?|").replace("!", "!|").split("|")
# we don't split on the punctuation marks because we want to retain them.
self.split_audio(reference_audio, text_list)
# at this point, split_1.wav, split_2.wav and split_3.wav should exist.
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_1.flac")
self.part_1_voice_1 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_1.wav",
reference_transcription=text_list[0],
clone_speaker_identity=False,
lang="en")
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_2.wav")
self.part_1_voice_2 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_1.wav",
reference_transcription=text_list[0],
clone_speaker_identity=False,
lang="en")
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_3.wav")
self.part_1_voice_3 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_1.wav",
reference_transcription=text_list[0],
clone_speaker_identity=False,
lang="en")
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_1.flac")
self.part_2_voice_1 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_2.wav",
reference_transcription=text_list[1],
clone_speaker_identity=False,
lang="en")
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_2.wav")
self.part_2_voice_2 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_2.wav",
reference_transcription=text_list[1],
clone_speaker_identity=False,
lang="en")
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_3.wav")
self.part_2_voice_3 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_2.wav",
reference_transcription=text_list[1],
clone_speaker_identity=False,
lang="en")
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_1.flac")
self.part_3_voice_1 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_3.wav",
reference_transcription=text_list[2],
clone_speaker_identity=False,
lang="en")
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_2.wav")
self.part_3_voice_2 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_3.wav",
reference_transcription=text_list[2],
clone_speaker_identity=False,
lang="en")
self.utterance_cloner.tts.set_utterance_embedding("reference_audios/voice_3.wav")
self.part_3_voice_3 = self.utterance_cloner.clone_utterance(path_to_reference_audio="split_3.wav",
reference_transcription=text_list[2],
clone_speaker_identity=False,
lang="en")
def read(self, _, speaker_1, speaker_2, speaker_3):
reference_audio = "reference_audios/clone_me_5.wav"
if speaker_1 == "Voice 1":
part_1 = self.part_1_voice_1
elif speaker_1 == "Voice 2":
part_1 = self.part_1_voice_2
elif speaker_1 == "Voice 3":
part_1 = self.part_1_voice_3
if speaker_2 == "Voice 1":
part_2 = self.part_2_voice_1
elif speaker_2 == "Voice 2":
part_2 = self.part_2_voice_2
elif speaker_2 == "Voice 3":
part_2 = self.part_2_voice_3
if speaker_3 == "Voice 1":
part_3 = self.part_3_voice_1
elif speaker_3 == "Voice 2":
part_3 = self.part_3_voice_2
elif speaker_3 == "Voice 3":
part_3 = self.part_3_voice_3
return "alignment.png", \
reference_audio, \
self.speaker_path_lookup["Voice 1"], \
self.speaker_path_lookup["Voice 2"], \
self.speaker_path_lookup["Voice 3"], \
(48000, float2pcm(torch.cat([torch.tensor(part_1), torch.tensor(part_2), torch.tensor(part_3)], dim=0).numpy()))
def split_audio(self, path_to_audio, text_list):
# extract audio
audio, sr = sf.read(path_to_audio)
ap = AudioPreprocessor(input_sr=sr, output_sr=16000, melspec_buckets=80, hop_length=256, n_fft=1024, cut_silence=False)
norm_wave = ap.audio_to_wave_tensor(normalize=True, audio=audio)
melspec = ap.audio_to_mel_spec_tensor(audio=norm_wave, normalize=False, explicit_sampling_rate=16000).transpose(0, 1)
# extract phonemes
lines = list()
self.tf.use_word_boundaries = False # this causes problems when splitting otherwise
for segment in text_list:
if segment.strip() != "":
lines.append(self.tf.string_to_tensor(segment, handle_missing=False).squeeze())
self.tf.use_word_boundaries = True
# postprocess phonemes: [~ sentence ~ #] --> [sentence ~] except for the first one, which is [~ sentence ~]
processed_lines = list()
for index, line in enumerate(lines):
if index == 0:
processed_lines.append(line[:-1])
else:
processed_lines.append(line[1:-1])
lines = processed_lines
joined_phonemes = torch.cat(lines, dim=0)
# get durations of each phone in audio as average of an ensemble
alignment_paths = list()
ensemble_of_durations = list()
for ensemble in range(1):
alignment_paths.append(self.acoustic_model.inference(mel=melspec.to(self.device),
tokens=joined_phonemes.to(self.device),
save_img_for_debug="alignment.png" if ensemble == 0 else None,
return_ctc=False))
for alignment_path in alignment_paths:
ensemble_of_durations.append(self.dc(torch.LongTensor(alignment_path), vis=None).squeeze())
durations = list()
for i, _ in enumerate(ensemble_of_durations[0]):
duration_of_phone = list()
for ensemble_member in ensemble_of_durations:
duration_of_phone.append(ensemble_member.squeeze()[i])
durations.append(sum(duration_of_phone) / len(duration_of_phone))
# cut audio according to duration sum of each line in transcript
line_lens = [len(x) for x in lines]
index = 0
segment_durations = list()
for num_phones in line_lens:
segment_durations.append(sum(durations[index: index + num_phones]))
index += num_phones
spec_to_wave_factor = len(norm_wave) / sum(segment_durations)
wave_segment_lens = [int(x * spec_to_wave_factor) for x in segment_durations]
start_index = 0
wave_segments = list()
for index, segment_len in enumerate(wave_segment_lens):
if index == len(wave_segment_lens) - 1:
wave_segments.append(norm_wave[start_index:])
else:
wave_segments.append(norm_wave[start_index: start_index + segment_len])
start_index += segment_len
# write the audio segments into new files
for index, wave_segment in enumerate(wave_segments):
sf.write(f"split_{index + 1}.wav", wave_segment, 16000)
meta_model = TTS_Interface()
article = "<p style='text-align: left'>This is still a work in progress, models will be exchanged for better ones as soon as they are done. More diverse training data can help with more exact cloning. For example we are still trying to incorporate more singing data. </p><p style='text-align: center'><a href='https://github.com/DigitalPhonetics/IMS-Toucan' target='_blank'>Click here to learn more about the IMS Toucan Speech Synthesis Toolkit</a></p>"
iface = gr.Interface(fn=meta_model.read,
inputs=[gr.inputs.Dropdown(
[
"Betty Botter bought some butter, but she said the butters bitter. If I put it in my batter, it will make my batter bitter. But a bit of better butter will make my batter better."],
type="value",
default="Betty Botter bought some butter, but she said the butters bitter. If I put it in my batter, it will make my batter bitter. But a bit of better butter will make my batter better.",
label="Select which utterance should be customized"),
gr.inputs.Dropdown(["Voice 1",
"Voice 2",
"Voice 3"], type="value", default="Voice 1", label="Speaker selection for the first sentence"),
gr.inputs.Dropdown(["Voice 1",
"Voice 2",
"Voice 3"], type="value", default="Voice 2", label="Speaker selection for the second sentence"),
gr.inputs.Dropdown(["Voice 1",
"Voice 2",
"Voice 3"], type="value", default="Voice 3", label="Speaker selection for the third sentence")],
outputs=[gr.outputs.Image(label="Alignment of Phonemes to Audio"),
gr.outputs.Audio(type="file", label="Original Audio"),
gr.outputs.Audio(type="file", label="Reference-Voice 1"),
gr.outputs.Audio(type="file", label="Reference-Voice 2"),
gr.outputs.Audio(type="file", label="Reference-Voice 3"),
gr.outputs.Audio(type="numpy", label="Customized Audio")],
layout="vertical",
title="Speech Customization",
thumbnail="Utility/toucan.png",
theme="default",
allow_flagging="never",
allow_screenshot=False,
description="In this demo, an audio is split automatically into individual sentences. Then each of the sentences is re-synthesized into speech with the exact same prosody, but with a voice that you can choose. This allows customizing any existing read speech while retaining as much from the original reading as possible. Unfortunately, we cannot show you the reference audio and the reference voices ahead of time, so they will be displayed together with the resulting cloned speech.",
article=article)
iface.launch(enable_queue=True)