Spaces:
Runtime error
Runtime error
import librosa | |
import librosa.core as lb | |
import librosa.display as lbd | |
import matplotlib.pyplot as plt | |
import numpy | |
import numpy as np | |
import pyloudnorm as pyln | |
import torch | |
from torchaudio.transforms import Resample | |
class AudioPreprocessor: | |
def __init__(self, input_sr, output_sr=None, melspec_buckets=80, hop_length=256, n_fft=1024, cut_silence=False, device="cpu"): | |
""" | |
The parameters are by default set up to do well | |
on a 16kHz signal. A different sampling rate may | |
require different hop_length and n_fft (e.g. | |
doubling frequency --> doubling hop_length and | |
doubling n_fft) | |
""" | |
self.cut_silence = cut_silence | |
self.device = device | |
self.sr = input_sr | |
self.new_sr = output_sr | |
self.hop_length = hop_length | |
self.n_fft = n_fft | |
self.mel_buckets = melspec_buckets | |
self.meter = pyln.Meter(input_sr) | |
self.final_sr = input_sr | |
if cut_silence: | |
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True # torch 1.9 has a bug in the hub loading, this is a workaround | |
# careful: assumes 16kHz or 8kHz audio | |
self.silero_model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', | |
model='silero_vad', | |
force_reload=False, | |
onnx=False, | |
verbose=False) | |
(self.get_speech_timestamps, | |
self.save_audio, | |
self.read_audio, | |
self.VADIterator, | |
self.collect_chunks) = utils | |
self.silero_model = self.silero_model.to(self.device) | |
if output_sr is not None and output_sr != input_sr: | |
self.resample = Resample(orig_freq=input_sr, new_freq=output_sr).to(self.device) | |
self.final_sr = output_sr | |
else: | |
self.resample = lambda x: x | |
def cut_silence_from_audio(self, audio): | |
""" | |
https://github.com/snakers4/silero-vad | |
""" | |
return self.collect_chunks(self.get_speech_timestamps(audio, self.silero_model, sampling_rate=self.final_sr), audio) | |
def to_mono(self, x): | |
""" | |
make sure we deal with a 1D array | |
""" | |
if len(x.shape) == 2: | |
return lb.to_mono(numpy.transpose(x)) | |
else: | |
return x | |
def normalize_loudness(self, audio): | |
""" | |
normalize the amplitudes according to | |
their decibels, so this should turn any | |
signal with different magnitudes into | |
the same magnitude by analysing loudness | |
""" | |
loudness = self.meter.integrated_loudness(audio) | |
loud_normed = pyln.normalize.loudness(audio, loudness, -30.0) | |
peak = numpy.amax(numpy.abs(loud_normed)) | |
peak_normed = numpy.divide(loud_normed, peak) | |
return peak_normed | |
def logmelfilterbank(self, audio, sampling_rate, fmin=40, fmax=8000, eps=1e-10): | |
""" | |
Compute log-Mel filterbank | |
one day this could be replaced by torchaudio's internal log10(melspec(audio)), but | |
for some reason it gives slightly different results, so in order not to break backwards | |
compatibility, this is kept for now. If there is ever a reason to completely re-train | |
all models, this would be a good opportunity to make the switch. | |
""" | |
if isinstance(audio, torch.Tensor): | |
audio = audio.numpy() | |
# get amplitude spectrogram | |
x_stft = librosa.stft(audio, n_fft=self.n_fft, hop_length=self.hop_length, win_length=None, window="hann", pad_mode="reflect") | |
spc = np.abs(x_stft).T | |
# get mel basis | |
fmin = 0 if fmin is None else fmin | |
fmax = sampling_rate / 2 if fmax is None else fmax | |
mel_basis = librosa.filters.mel(sampling_rate, self.n_fft, self.mel_buckets, fmin, fmax) | |
# apply log and return | |
return torch.Tensor(np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))).transpose(0, 1) | |
def normalize_audio(self, audio): | |
""" | |
one function to apply them all in an | |
order that makes sense. | |
""" | |
audio = self.to_mono(audio) | |
audio = self.normalize_loudness(audio) | |
audio = torch.Tensor(audio).to(self.device) | |
audio = self.resample(audio) | |
if self.cut_silence: | |
audio = self.cut_silence_from_audio(audio) | |
return audio.to("cpu") | |
def visualize_cleaning(self, unclean_audio): | |
""" | |
displays Mel Spectrogram of unclean audio | |
and then displays Mel Spectrogram of the | |
cleaned version. | |
""" | |
fig, ax = plt.subplots(nrows=2, ncols=1) | |
unclean_audio_mono = self.to_mono(unclean_audio) | |
unclean_spec = self.audio_to_mel_spec_tensor(unclean_audio_mono, normalize=False).numpy() | |
clean_spec = self.audio_to_mel_spec_tensor(unclean_audio_mono, normalize=True).numpy() | |
lbd.specshow(unclean_spec, sr=self.sr, cmap='GnBu', y_axis='mel', ax=ax[0], x_axis='time') | |
ax[0].set(title='Uncleaned Audio') | |
ax[0].label_outer() | |
if self.new_sr is not None: | |
lbd.specshow(clean_spec, sr=self.new_sr, cmap='GnBu', y_axis='mel', ax=ax[1], x_axis='time') | |
else: | |
lbd.specshow(clean_spec, sr=self.sr, cmap='GnBu', y_axis='mel', ax=ax[1], x_axis='time') | |
ax[1].set(title='Cleaned Audio') | |
ax[1].label_outer() | |
plt.show() | |
def audio_to_wave_tensor(self, audio, normalize=True): | |
if normalize: | |
return self.normalize_audio(audio) | |
else: | |
if isinstance(audio, torch.Tensor): | |
return audio | |
else: | |
return torch.Tensor(audio) | |
def audio_to_mel_spec_tensor(self, audio, normalize=True, explicit_sampling_rate=None): | |
""" | |
explicit_sampling_rate is for when | |
normalization has already been applied | |
and that included resampling. No way | |
to detect the current sr of the incoming | |
audio | |
""" | |
if explicit_sampling_rate is None: | |
if normalize: | |
audio = self.normalize_audio(audio) | |
return self.logmelfilterbank(audio=audio, sampling_rate=self.final_sr) | |
return self.logmelfilterbank(audio=audio, sampling_rate=self.sr) | |
if normalize: | |
audio = self.normalize_audio(audio) | |
return self.logmelfilterbank(audio=audio, sampling_rate=explicit_sampling_rate) | |
if __name__ == '__main__': | |
import soundfile | |
wav, sr = soundfile.read("../audios/test.wav") | |
ap = AudioPreprocessor(input_sr=sr, output_sr=16000) | |
ap.visualize_cleaning(wav) | |