Spaces:
Running
Running
""" | |
taken and adapted from https://github.com/as-ideas/DeepForcedAligner | |
""" | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import torch.multiprocessing | |
import torch.nn as nn | |
from scipy.sparse import coo_matrix | |
from scipy.sparse.csgraph import dijkstra | |
from torch.nn import CTCLoss | |
from torch.nn.utils.rnn import pack_padded_sequence | |
from torch.nn.utils.rnn import pad_packed_sequence | |
from Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend | |
class BatchNormConv(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int, kernel_size: int): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
in_channels, out_channels, kernel_size, | |
stride=1, padding=kernel_size // 2, bias=False) | |
self.bnorm = nn.BatchNorm1d(out_channels) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
x = x.transpose(1, 2) | |
x = self.conv(x) | |
x = self.relu(x) | |
x = self.bnorm(x) | |
x = x.transpose(1, 2) | |
return x | |
class Aligner(torch.nn.Module): | |
def __init__(self, | |
n_mels=80, | |
num_symbols=145, | |
lstm_dim=512, | |
conv_dim=512): | |
super().__init__() | |
self.convs = nn.ModuleList([ | |
BatchNormConv(n_mels, conv_dim, 3), | |
nn.Dropout(p=0.5), | |
BatchNormConv(conv_dim, conv_dim, 3), | |
nn.Dropout(p=0.5), | |
BatchNormConv(conv_dim, conv_dim, 3), | |
nn.Dropout(p=0.5), | |
BatchNormConv(conv_dim, conv_dim, 3), | |
nn.Dropout(p=0.5), | |
BatchNormConv(conv_dim, conv_dim, 3), | |
nn.Dropout(p=0.5), | |
]) | |
self.rnn = torch.nn.LSTM(conv_dim, lstm_dim, batch_first=True, bidirectional=True) | |
self.proj = torch.nn.Linear(2 * lstm_dim, num_symbols) | |
self.tf = ArticulatoryCombinedTextFrontend(language="en") | |
self.ctc_loss = CTCLoss(blank=144, zero_infinity=True) | |
self.vector_to_id = dict() | |
for phone in self.tf.phone_to_vector: | |
self.vector_to_id[tuple(self.tf.phone_to_vector[phone])] = self.tf.phone_to_id[phone] | |
def forward(self, x, lens=None): | |
for conv in self.convs: | |
x = conv(x) | |
if lens is not None: | |
x = pack_padded_sequence(x, lens.cpu(), batch_first=True, enforce_sorted=False) | |
x, _ = self.rnn(x) | |
if lens is not None: | |
x, _ = pad_packed_sequence(x, batch_first=True) | |
x = self.proj(x) | |
return x | |
def label_speech(self, speech): | |
# theoretically possible, but doesn't work well at all. Would probably require a beamsearch | |
probabilities_of_phones_over_frames = self(speech.unsqueeze(0)).squeeze()[:, :73] | |
smoothed_phone_probs_over_frames = list() | |
for index, _ in enumerate(probabilities_of_phones_over_frames): | |
access_safe_prev_index = max(0, index - 1) | |
access_safe_next_index = min(index + 1, len(probabilities_of_phones_over_frames) - 1) | |
smoothed_probs = (probabilities_of_phones_over_frames[access_safe_prev_index] + | |
probabilities_of_phones_over_frames[access_safe_next_index] + | |
probabilities_of_phones_over_frames[index]) / 3 | |
smoothed_phone_probs_over_frames.append(smoothed_probs.unsqueeze(0)) | |
print(torch.cat(smoothed_phone_probs_over_frames)) | |
_, phone_ids_over_frames = torch.max(torch.cat(smoothed_phone_probs_over_frames), dim=1) | |
phone_ids = torch.unique_consecutive(phone_ids_over_frames) | |
phones = list() | |
for id_of_phone in phone_ids: | |
phones.append(self.tf.id_to_phone[int(id_of_phone)]) | |
return "".join(phones) | |
def inference(self, mel, tokens, save_img_for_debug=None, train=False, pathfinding="MAS", return_ctc=False): | |
if not train: | |
tokens_indexed = list() # first we need to convert the articulatory vectors to IDs, so we can apply dijkstra or viterbi | |
for vector in tokens: | |
tokens_indexed.append(self.vector_to_id[tuple(vector.cpu().detach().numpy().tolist())]) | |
tokens = np.asarray(tokens_indexed) | |
else: | |
tokens = tokens.cpu().detach().numpy() | |
pred = self(mel.unsqueeze(0)) | |
if return_ctc: | |
ctc_loss = self.ctc_loss(pred.transpose(0, 1).log_softmax(2), torch.LongTensor(tokens), torch.LongTensor([len(pred[0])]), | |
torch.LongTensor([len(tokens)])).item() | |
pred = pred.squeeze().cpu().detach().numpy() | |
pred_max = pred[:, tokens] | |
path_probs = 1. - pred_max | |
adj_matrix = to_adj_matrix(path_probs) | |
if pathfinding == "MAS": | |
alignment_matrix = binarize_alignment(pred_max) | |
if save_img_for_debug is not None: | |
phones = list() | |
for index in tokens: | |
for phone in self.tf.phone_to_id: | |
if self.tf.phone_to_id[phone] == index: | |
phones.append(phone) | |
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 4)) | |
ax.imshow(alignment_matrix, interpolation='nearest', aspect='auto', origin="lower", cmap='cividis') | |
ax.set_ylabel("Mel-Frames") | |
ax.set_xticks(range(len(pred_max[0]))) | |
ax.set_xticklabels(labels=phones) | |
ax.set_title("MAS Path") | |
plt.tight_layout() | |
fig.savefig(save_img_for_debug) | |
fig.clf() | |
plt.close() | |
if return_ctc: | |
return alignment_matrix, ctc_loss | |
return alignment_matrix | |
elif pathfinding == "dijkstra": | |
dist_matrix, predecessors, *_ = dijkstra(csgraph=adj_matrix, | |
directed=True, | |
indices=0, | |
return_predecessors=True) | |
path = [] | |
pr_index = predecessors[-1] | |
while pr_index != 0: | |
path.append(pr_index) | |
pr_index = predecessors[pr_index] | |
path.reverse() | |
# append first and last node | |
path = [0] + path + [dist_matrix.size - 1] | |
cols = path_probs.shape[1] | |
mel_text = {} | |
# collect indices (mel, text) along the path | |
for node_index in path: | |
i, j = from_node_index(node_index, cols) | |
mel_text[i] = j | |
path_plot = np.zeros_like(pred_max) | |
for i in mel_text: | |
path_plot[i][mel_text[i]] = 1.0 | |
if save_img_for_debug is not None: | |
phones = list() | |
for index in tokens: | |
for phone in self.tf.phone_to_id: | |
if self.tf.phone_to_id[phone] == index: | |
phones.append(phone) | |
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(10, 9)) | |
ax[0].imshow(pred_max, interpolation='nearest', aspect='auto', origin="lower") | |
ax[1].imshow(path_plot, interpolation='nearest', aspect='auto', origin="lower", cmap='cividis') | |
ax[0].set_ylabel("Mel-Frames") | |
ax[1].set_ylabel("Mel-Frames") | |
ax[0].set_xticks(range(len(pred_max[0]))) | |
ax[0].set_xticklabels(labels=phones) | |
ax[1].set_xticks(range(len(pred_max[0]))) | |
ax[1].set_xticklabels(labels=phones) | |
ax[0].set_title("Path Probabilities") | |
ax[1].set_title("Dijkstra Path") | |
plt.tight_layout() | |
fig.savefig(save_img_for_debug) | |
fig.clf() | |
plt.close() | |
if return_ctc: | |
return path_plot, ctc_loss | |
return path_plot | |
def binarize_alignment(alignment_prob): | |
""" | |
# Implementation by: | |
# https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/FastPitch/fastpitch/alignment.py | |
# https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/FastPitch/fastpitch/attn_loss_function.py | |
Binarizes alignment with MAS. | |
""" | |
# assumes mel x text | |
opt = np.zeros_like(alignment_prob) | |
alignment_prob = alignment_prob + (np.abs(alignment_prob).max() + 1.0) # make all numbers positive and add an offset to avoid log of 0 later | |
alignment_prob * alignment_prob * (1.0 / alignment_prob.max()) # normalize to (0, 1] | |
attn_map = np.log(alignment_prob) | |
attn_map[0, 1:] = -np.inf | |
log_p = np.zeros_like(attn_map) | |
log_p[0, :] = attn_map[0, :] | |
prev_ind = np.zeros_like(attn_map, dtype=np.int64) | |
for i in range(1, attn_map.shape[0]): | |
for j in range(attn_map.shape[1]): # for each text dim | |
prev_log = log_p[i - 1, j] | |
prev_j = j | |
if j - 1 >= 0 and log_p[i - 1, j - 1] >= log_p[i - 1, j]: | |
prev_log = log_p[i - 1, j - 1] | |
prev_j = j - 1 | |
log_p[i, j] = attn_map[i, j] + prev_log | |
prev_ind[i, j] = prev_j | |
# now backtrack | |
curr_text_idx = attn_map.shape[1] - 1 | |
for i in range(attn_map.shape[0] - 1, -1, -1): | |
opt[i, curr_text_idx] = 1 | |
curr_text_idx = prev_ind[i, curr_text_idx] | |
opt[0, curr_text_idx] = 1 | |
return opt | |
def to_node_index(i, j, cols): | |
return cols * i + j | |
def from_node_index(node_index, cols): | |
return node_index // cols, node_index % cols | |
def to_adj_matrix(mat): | |
rows = mat.shape[0] | |
cols = mat.shape[1] | |
row_ind = [] | |
col_ind = [] | |
data = [] | |
for i in range(rows): | |
for j in range(cols): | |
node = to_node_index(i, j, cols) | |
if j < cols - 1: | |
right_node = to_node_index(i, j + 1, cols) | |
weight_right = mat[i, j + 1] | |
row_ind.append(node) | |
col_ind.append(right_node) | |
data.append(weight_right) | |
if i < rows - 1 and j < cols: | |
bottom_node = to_node_index(i + 1, j, cols) | |
weight_bottom = mat[i + 1, j] | |
row_ind.append(node) | |
col_ind.append(bottom_node) | |
data.append(weight_bottom) | |
if i < rows - 1 and j < cols - 1: | |
bottom_right_node = to_node_index(i + 1, j + 1, cols) | |
weight_bottom_right = mat[i + 1, j + 1] | |
row_ind.append(node) | |
col_ind.append(bottom_right_node) | |
data.append(weight_bottom_right) | |
adj_mat = coo_matrix((data, (row_ind, col_ind)), shape=(rows * cols, rows * cols)) | |
return adj_mat.tocsr() | |