Spaces:
Running
on
T4
Running
on
T4
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| """Encodec SEANet-based encoder and decoder implementation.""" | |
| import numpy as np | |
| """LSTM layers module.""" | |
| from torch import nn | |
| class SLSTM(nn.Module): | |
| """ | |
| LSTM without worrying about the hidden state, nor the layout of the data. | |
| Expects input as convolutional layout. | |
| """ | |
| def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True): | |
| super().__init__() | |
| self.skip = skip | |
| self.lstm = nn.LSTM(dimension, dimension, num_layers) | |
| def forward(self, x): | |
| x = x.permute(2, 0, 1) | |
| y, _ = self.lstm(x) | |
| if self.skip: | |
| y = y + x | |
| y = y.permute(1, 2, 0) | |
| return y | |
| """Convolutional layers wrappers and utilities.""" | |
| import math | |
| import warnings | |
| from torch.nn import functional as F | |
| from torch.nn.utils import spectral_norm, weight_norm | |
| """Normalization modules.""" | |
| import typing as tp | |
| import einops | |
| import torch | |
| from torch import nn | |
| class ConvLayerNorm(nn.LayerNorm): | |
| """ | |
| Convolution-friendly LayerNorm that moves channels to last dimensions | |
| before running the normalization and moves them back to original position right after. | |
| """ | |
| def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs): | |
| super().__init__(normalized_shape, **kwargs) | |
| def forward(self, x): | |
| x = einops.rearrange(x, 'b ... t -> b t ...') | |
| x = super().forward(x) | |
| x = einops.rearrange(x, 'b t ... -> b ... t') | |
| return | |
| CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm', | |
| 'time_layer_norm', 'layer_norm', 'time_group_norm']) | |
| def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module: | |
| assert norm in CONV_NORMALIZATIONS | |
| if norm == 'weight_norm': | |
| return weight_norm(module) | |
| elif norm == 'spectral_norm': | |
| return spectral_norm(module) | |
| else: | |
| # We already check was in CONV_NORMALIZATION, so any other choice | |
| # doesn't need reparametrization. | |
| return module | |
| def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module: | |
| """Return the proper normalization module. If causal is True, this will ensure the returned | |
| module is causal, or return an error if the normalization doesn't support causal evaluation. | |
| """ | |
| assert norm in CONV_NORMALIZATIONS | |
| if norm == 'layer_norm': | |
| assert isinstance(module, nn.modules.conv._ConvNd) | |
| return ConvLayerNorm(module.out_channels, **norm_kwargs) | |
| elif norm == 'time_group_norm': | |
| if causal: | |
| raise ValueError("GroupNorm doesn't support causal evaluation.") | |
| assert isinstance(module, nn.modules.conv._ConvNd) | |
| return nn.GroupNorm(1, module.out_channels, **norm_kwargs) | |
| else: | |
| return nn.Identity() | |
| def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, | |
| padding_total: int = 0) -> int: | |
| """See `pad_for_conv1d`. | |
| """ | |
| length = x.shape[-1] | |
| n_frames = (length - kernel_size + padding_total) / stride + 1 | |
| ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) | |
| return ideal_length - length | |
| def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0): | |
| """Pad for a convolution to make sure that the last window is full. | |
| Extra padding is added at the end. This is required to ensure that we can rebuild | |
| an output of the same length, as otherwise, even with padding, some time steps | |
| might get removed. | |
| For instance, with total padding = 4, kernel size = 4, stride = 2: | |
| 0 0 1 2 3 4 5 0 0 # (0s are padding) | |
| 1 2 3 # (output frames of a convolution, last 0 is never used) | |
| 0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding) | |
| 1 2 3 4 # once you removed padding, we are missing one time step ! | |
| """ | |
| extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total) | |
| return F.pad(x, (0, extra_padding)) | |
| def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.): | |
| """Tiny wrapper around F.pad, just to allow for reflect padding on small input. | |
| If this is the case, we insert extra 0 padding to the right before the reflection happen. | |
| """ | |
| length = x.shape[-1] | |
| padding_left, padding_right = paddings | |
| assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) | |
| if mode == 'reflect': | |
| max_pad = max(padding_left, padding_right) | |
| extra_pad = 0 | |
| if length <= max_pad: | |
| extra_pad = max_pad - length + 1 | |
| x = F.pad(x, (0, extra_pad)) | |
| padded = F.pad(x, paddings, mode, value) | |
| end = padded.shape[-1] - extra_pad | |
| return padded[..., :end] | |
| else: | |
| return F.pad(x, paddings, mode, value) | |
| def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]): | |
| """Remove padding from x, handling properly zero padding. Only for 1d!""" | |
| padding_left, padding_right = paddings | |
| assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) | |
| assert (padding_left + padding_right) <= x.shape[-1] | |
| end = x.shape[-1] - padding_right | |
| return x[..., padding_left: end] | |
| class NormConv1d(nn.Module): | |
| """Wrapper around Conv1d and normalization applied to this conv | |
| to provide a uniform interface across normalization approaches. | |
| """ | |
| def __init__(self, *args, causal: bool = False, norm: str = 'none', | |
| norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): | |
| super().__init__() | |
| self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm) | |
| self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs) | |
| self.norm_type = norm | |
| def forward(self, x): | |
| x = self.conv(x) | |
| x = self.norm(x) | |
| return x | |
| class NormConv2d(nn.Module): | |
| """Wrapper around Conv2d and normalization applied to this conv | |
| to provide a uniform interface across normalization approaches. | |
| """ | |
| def __init__(self, *args, norm: str = 'none', | |
| norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): | |
| super().__init__() | |
| self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm) | |
| self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs) | |
| self.norm_type = norm | |
| def forward(self, x): | |
| x = self.conv(x) | |
| x = self.norm(x) | |
| return x | |
| class NormConvTranspose1d(nn.Module): | |
| """Wrapper around ConvTranspose1d and normalization applied to this conv | |
| to provide a uniform interface across normalization approaches. | |
| """ | |
| def __init__(self, *args, causal: bool = False, norm: str = 'none', | |
| norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): | |
| super().__init__() | |
| self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm) | |
| self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs) | |
| self.norm_type = norm | |
| def forward(self, x): | |
| x = self.convtr(x) | |
| x = self.norm(x) | |
| return x | |
| class NormConvTranspose2d(nn.Module): | |
| """Wrapper around ConvTranspose2d and normalization applied to this conv | |
| to provide a uniform interface across normalization approaches. | |
| """ | |
| def __init__(self, *args, norm: str = 'none', | |
| norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): | |
| super().__init__() | |
| self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm) | |
| self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs) | |
| def forward(self, x): | |
| x = self.convtr(x) | |
| x = self.norm(x) | |
| return x | |
| class SConv1d(nn.Module): | |
| """Conv1d with some builtin handling of asymmetric or causal padding | |
| and normalization. | |
| """ | |
| def __init__(self, in_channels: int, out_channels: int, | |
| kernel_size: int, stride: int = 1, dilation: int = 1, | |
| groups: int = 1, bias: bool = True, causal: bool = False, | |
| norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {}, | |
| pad_mode: str = 'reflect'): | |
| super().__init__() | |
| # warn user on unusual setup between dilation and stride | |
| if stride > 1 and dilation > 1: | |
| warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1' | |
| f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).') | |
| self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride, | |
| dilation=dilation, groups=groups, bias=bias, causal=causal, | |
| norm=norm, norm_kwargs=norm_kwargs) | |
| self.causal = causal | |
| self.pad_mode = pad_mode | |
| def forward(self, x): | |
| B, C, T = x.shape | |
| kernel_size = self.conv.conv.kernel_size[0] | |
| stride = self.conv.conv.stride[0] | |
| dilation = self.conv.conv.dilation[0] | |
| padding_total = (kernel_size - 1) * dilation - (stride - 1) | |
| extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total) | |
| if self.causal: | |
| # Left padding for causal | |
| x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode) | |
| else: | |
| # Asymmetric padding required for odd strides | |
| padding_right = padding_total // 2 | |
| padding_left = padding_total - padding_right | |
| x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode) | |
| return self.conv(x) | |
| class SConvTranspose1d(nn.Module): | |
| """ConvTranspose1d with some builtin handling of asymmetric or causal padding | |
| and normalization. | |
| """ | |
| def __init__(self, in_channels: int, out_channels: int, | |
| kernel_size: int, stride: int = 1, causal: bool = False, | |
| norm: str = 'none', trim_right_ratio: float = 1., | |
| norm_kwargs: tp.Dict[str, tp.Any] = {}): | |
| super().__init__() | |
| self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride, | |
| causal=causal, norm=norm, norm_kwargs=norm_kwargs) | |
| self.causal = causal | |
| self.trim_right_ratio = trim_right_ratio | |
| assert self.causal or self.trim_right_ratio == 1., \ | |
| "`trim_right_ratio` != 1.0 only makes sense for causal convolutions" | |
| assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1. | |
| def forward(self, x): | |
| kernel_size = self.convtr.convtr.kernel_size[0] | |
| stride = self.convtr.convtr.stride[0] | |
| padding_total = kernel_size - stride | |
| y = self.convtr(x) | |
| # We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be | |
| # removed at the very end, when keeping only the right length for the output, | |
| # as removing it here would require also passing the length at the matching layer | |
| # in the encoder. | |
| if self.causal: | |
| # Trim the padding on the right according to the specified ratio | |
| # if trim_right_ratio = 1.0, trim everything from right | |
| padding_right = math.ceil(padding_total * self.trim_right_ratio) | |
| padding_left = padding_total - padding_right | |
| y = unpad1d(y, (padding_left, padding_right)) | |
| else: | |
| # Asymmetric padding required for odd strides | |
| padding_right = padding_total // 2 | |
| padding_left = padding_total - padding_right | |
| y = unpad1d(y, (padding_left, padding_right)) | |
| return y | |
| class SEANetResnetBlock(nn.Module): | |
| """Residual block from SEANet model. | |
| Args: | |
| dim (int): Dimension of the input/output | |
| kernel_sizes (list): List of kernel sizes for the convolutions. | |
| dilations (list): List of dilations for the convolutions. | |
| activation (str): Activation function. | |
| activation_params (dict): Parameters to provide to the activation function | |
| norm (str): Normalization method. | |
| norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
| causal (bool): Whether to use fully causal convolution. | |
| pad_mode (str): Padding mode for the convolutions. | |
| compress (int): Reduced dimensionality in residual branches (from Demucs v3) | |
| true_skip (bool): Whether to use true skip connection or a simple convolution as the skip connection. | |
| """ | |
| def __init__(self, dim: int, kernel_sizes: tp.List[int] = [3, 1], dilations: tp.List[int] = [1, 1], | |
| activation: str = 'ELU', activation_params: dict = {'alpha': 1.0}, | |
| norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, causal: bool = False, | |
| pad_mode: str = 'reflect', compress: int = 2, true_skip: bool = True): | |
| super().__init__() | |
| assert len(kernel_sizes) == len(dilations), 'Number of kernel sizes should match number of dilations' | |
| act = getattr(nn, activation) | |
| hidden = dim // compress | |
| block = [] | |
| for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): | |
| in_chs = dim if i == 0 else hidden | |
| out_chs = dim if i == len(kernel_sizes) - 1 else hidden | |
| block += [ | |
| act(**activation_params), | |
| SConv1d(in_chs, out_chs, kernel_size=kernel_size, dilation=dilation, | |
| norm=norm, norm_kwargs=norm_params, | |
| causal=causal, pad_mode=pad_mode), | |
| ] | |
| self.block = nn.Sequential(*block) | |
| self.shortcut: nn.Module | |
| if true_skip: | |
| self.shortcut = nn.Identity() | |
| else: | |
| self.shortcut = SConv1d(dim, dim, kernel_size=1, norm=norm, norm_kwargs=norm_params, | |
| causal=causal, pad_mode=pad_mode) | |
| def forward(self, x): | |
| return self.shortcut(x) + self.block(x) | |
| class SEANetEncoder(nn.Module): | |
| """SEANet encoder. | |
| Args: | |
| channels (int): Audio channels. | |
| dimension (int): Intermediate representation dimension. | |
| n_filters (int): Base width for the model. | |
| n_residual_layers (int): nb of residual layers. | |
| ratios (Sequence[int]): kernel size and stride ratios. The encoder uses downsampling ratios instead of | |
| upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here | |
| that must match the decoder order | |
| activation (str): Activation function. | |
| activation_params (dict): Parameters to provide to the activation function | |
| norm (str): Normalization method. | |
| norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
| kernel_size (int): Kernel size for the initial convolution. | |
| last_kernel_size (int): Kernel size for the initial convolution. | |
| residual_kernel_size (int): Kernel size for the residual layers. | |
| dilation_base (int): How much to increase the dilation with each layer. | |
| causal (bool): Whether to use fully causal convolution. | |
| pad_mode (str): Padding mode for the convolutions. | |
| true_skip (bool): Whether to use true skip connection or a simple | |
| (streamable) convolution as the skip connection in the residual network blocks. | |
| compress (int): Reduced dimensionality in residual branches (from Demucs v3). | |
| lstm (int): Number of LSTM layers at the end of the encoder. | |
| """ | |
| def __init__(self, channels: int = 1, dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 1, | |
| ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0}, | |
| norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, kernel_size: int = 7, | |
| last_kernel_size: int = 7, residual_kernel_size: int = 3, dilation_base: int = 2, causal: bool = False, | |
| pad_mode: str = 'reflect', true_skip: bool = False, compress: int = 2, lstm: int = 2): | |
| super().__init__() | |
| self.channels = channels | |
| self.dimension = dimension | |
| self.n_filters = n_filters | |
| self.ratios = list(reversed(ratios)) | |
| del ratios | |
| self.n_residual_layers = n_residual_layers | |
| self.hop_length = np.prod(self.ratios) # 计算乘积 | |
| act = getattr(nn, activation) | |
| mult = 1 | |
| model: tp.List[nn.Module] = [ | |
| SConv1d(channels, mult * n_filters, kernel_size, norm=norm, norm_kwargs=norm_params, | |
| causal=causal, pad_mode=pad_mode) | |
| ] | |
| # Downsample to raw audio scale | |
| for i, ratio in enumerate(self.ratios): | |
| # Add residual layers | |
| for j in range(n_residual_layers): | |
| model += [ | |
| SEANetResnetBlock(mult * n_filters, kernel_sizes=[residual_kernel_size, 1], | |
| dilations=[dilation_base ** j, 1], | |
| norm=norm, norm_params=norm_params, | |
| activation=activation, activation_params=activation_params, | |
| causal=causal, pad_mode=pad_mode, compress=compress, true_skip=true_skip)] | |
| # Add downsampling layers | |
| model += [ | |
| act(**activation_params), | |
| SConv1d(mult * n_filters, mult * n_filters * 2, | |
| kernel_size=ratio * 2, stride=ratio, | |
| norm=norm, norm_kwargs=norm_params, | |
| causal=causal, pad_mode=pad_mode), | |
| ] | |
| mult *= 2 | |
| if lstm: | |
| model += [SLSTM(mult * n_filters, num_layers=lstm)] | |
| model += [ | |
| act(**activation_params), | |
| SConv1d(mult * n_filters, dimension, last_kernel_size, norm=norm, norm_kwargs=norm_params, | |
| causal=causal, pad_mode=pad_mode) | |
| ] | |
| self.model = nn.Sequential(*model) | |
| def forward(self, x): | |
| return self.model(x) | |
| class SEANetDecoder(nn.Module): | |
| """SEANet decoder. | |
| Args: | |
| channels (int): Audio channels. | |
| dimension (int): Intermediate representation dimension. | |
| n_filters (int): Base width for the model. | |
| n_residual_layers (int): nb of residual layers. | |
| ratios (Sequence[int]): kernel size and stride ratios | |
| activation (str): Activation function. | |
| activation_params (dict): Parameters to provide to the activation function | |
| final_activation (str): Final activation function after all convolutions. | |
| final_activation_params (dict): Parameters to provide to the activation function | |
| norm (str): Normalization method. | |
| norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. | |
| kernel_size (int): Kernel size for the initial convolution. | |
| last_kernel_size (int): Kernel size for the initial convolution. | |
| residual_kernel_size (int): Kernel size for the residual layers. | |
| dilation_base (int): How much to increase the dilation with each layer. | |
| causal (bool): Whether to use fully causal convolution. | |
| pad_mode (str): Padding mode for the convolutions. | |
| true_skip (bool): Whether to use true skip connection or a simple | |
| (streamable) convolution as the skip connection in the residual network blocks. | |
| compress (int): Reduced dimensionality in residual branches (from Demucs v3). | |
| lstm (int): Number of LSTM layers at the end of the encoder. | |
| trim_right_ratio (float): Ratio for trimming at the right of the transposed convolution under the causal setup. | |
| If equal to 1.0, it means that all the trimming is done at the right. | |
| """ | |
| def __init__(self, channels: int = 1, dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 1, | |
| ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0}, | |
| final_activation: tp.Optional[str] = None, final_activation_params: tp.Optional[dict] = None, | |
| norm: str = 'weight_norm', norm_params: tp.Dict[str, tp.Any] = {}, kernel_size: int = 7, | |
| last_kernel_size: int = 7, residual_kernel_size: int = 3, dilation_base: int = 2, causal: bool = False, | |
| pad_mode: str = 'reflect', true_skip: bool = False, compress: int = 2, lstm: int = 2, | |
| trim_right_ratio: float = 1.0): | |
| super().__init__() | |
| self.dimension = dimension | |
| self.channels = channels | |
| self.n_filters = n_filters | |
| self.ratios = ratios | |
| del ratios | |
| self.n_residual_layers = n_residual_layers | |
| self.hop_length = np.prod(self.ratios) | |
| act = getattr(nn, activation) | |
| mult = int(2 ** len(self.ratios)) | |
| model: tp.List[nn.Module] = [ | |
| SConv1d(dimension, mult * n_filters, kernel_size, norm=norm, norm_kwargs=norm_params, | |
| causal=causal, pad_mode=pad_mode) | |
| ] | |
| if lstm: | |
| model += [SLSTM(mult * n_filters, num_layers=lstm)] | |
| # Upsample to raw audio scale | |
| for i, ratio in enumerate(self.ratios): | |
| # Add upsampling layers | |
| model += [ | |
| act(**activation_params), | |
| SConvTranspose1d(mult * n_filters, mult * n_filters // 2, | |
| kernel_size=ratio * 2, stride=ratio, | |
| norm=norm, norm_kwargs=norm_params, | |
| causal=causal, trim_right_ratio=trim_right_ratio), | |
| ] | |
| # Add residual layers | |
| for j in range(n_residual_layers): | |
| model += [ | |
| SEANetResnetBlock(mult * n_filters // 2, kernel_sizes=[residual_kernel_size, 1], | |
| dilations=[dilation_base ** j, 1], | |
| activation=activation, activation_params=activation_params, | |
| norm=norm, norm_params=norm_params, causal=causal, | |
| pad_mode=pad_mode, compress=compress, true_skip=true_skip)] | |
| mult //= 2 | |
| # Add final layers | |
| model += [ | |
| act(**activation_params), | |
| SConv1d(n_filters, channels, last_kernel_size, norm=norm, norm_kwargs=norm_params, | |
| causal=causal, pad_mode=pad_mode) | |
| ] | |
| # Add optional final activation to decoder (eg. tanh) | |
| if final_activation is not None: | |
| final_act = getattr(nn, final_activation) | |
| final_activation_params = final_activation_params or {} | |
| model += [ | |
| final_act(**final_activation_params) | |
| ] | |
| self.model = nn.Sequential(*model) | |
| def forward(self, z): | |
| y = self.model(z) | |
| return y | |
| def test(): | |
| import torch | |
| encoder = SEANetEncoder() | |
| decoder = SEANetDecoder() | |
| x = torch.randn(1, 1, 24000) | |
| z = encoder(x) | |
| print('z ', z.shape) | |
| assert 1 == 2 | |
| assert list(z.shape) == [1, 128, 75], z.shape | |
| y = decoder(z) | |
| assert y.shape == x.shape, (x.shape, y.shape) | |
| if __name__ == '__main__': | |
| test() | |