Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
18.7 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import AvgPool1d
from torch.nn import Conv1d
from torch.nn import Conv2d
from torch.nn import ConvTranspose1d
from torch.nn.utils import remove_weight_norm
from torch.nn.utils import spectral_norm
from torch.nn.utils import weight_norm
from Preprocessing.Codec.utils import get_padding
from Preprocessing.Codec.utils import init_weights
LRELU_SLOPE = 0.1
class ResBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1))), weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1))), weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Generator(torch.nn.Module):
def __init__(self, h):
super(Generator, self).__init__()
self.h = h
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.conv_pre = weight_norm(
Conv1d(512, h.upsample_initial_channel, 7, 1, padding=3))
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
self.ups = nn.ModuleList()
for i, (u,
k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
h.upsample_initial_channel // (2 ** i),
h.upsample_initial_channel // (2 ** (i + 1)),
k,
u,
# padding=(u//2 + u%2),
padding=(k - u) // 2,
# output_padding=u%2
)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
# print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3,
use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(
Conv2d(
1,
32, (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0))),
norm_f(
Conv2d(
32,
128, (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0))),
norm_f(
Conv2d(
128,
512, (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0))),
norm_f(
Conv2d(
512,
1024, (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(2),
DiscriminatorP(3),
DiscriminatorP(5),
DiscriminatorP(7),
DiscriminatorP(11),
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiScaleDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True),
DiscriminatorS(),
DiscriminatorS(),
])
self.meanpools = nn.ModuleList(
[AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if i != 0:
y = self.meanpools[i - 1](y)
y_hat = self.meanpools[i - 1](y_hat)
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg ** 2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
class Encoder(torch.nn.Module):
def __init__(self, h):
super(Encoder, self).__init__()
self.h = h
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.conv_pre = weight_norm(Conv1d(1, 32, 7, 1, padding=3))
self.normalize = nn.ModuleList()
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(
list(
reversed(
list(zip(h.upsample_rates, h.upsample_kernel_sizes))))):
self.ups.append(
weight_norm(
Conv1d(
32 * (2 ** i),
32 * (2 ** (i + 1)),
k,
u,
padding=((k - u) // 2)
# padding=(u//2 + u%2)
)))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = 32 * (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(
list(reversed(h.resblock_kernel_sizes)),
list(reversed(h.resblock_dilation_sizes)))):
self.resblocks.append(resblock(h, ch, k, d))
self.normalize.append(
torch.nn.GroupNorm(ch // 16, ch, eps=1e-6, affine=True))
self.conv_post = Conv1d(512, 512, 3, 1, padding=1)
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
xs = self.normalize[i * self.num_kernels + j](xs)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
xs = self.normalize[i * self.num_kernels + j](xs)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
class Quantizer_module(torch.nn.Module):
def __init__(self, n_e, e_dim):
super(Quantizer_module, self).__init__()
self.embedding = nn.Embedding(n_e, e_dim)
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
def forward(self, x):
# compute Euclidean distance
d = torch.sum(x ** 2, 1, keepdim=True) + torch.sum(self.embedding.weight ** 2, 1) \
- 2 * torch.matmul(x, self.embedding.weight.T)
min_indicies = torch.argmin(d, 1)
z_q = self.embedding(min_indicies)
return z_q, min_indicies
class Quantizer(torch.nn.Module):
def __init__(self, h):
super(Quantizer, self).__init__()
assert 512 % h.n_code_groups == 0
self.quantizer_modules = nn.ModuleList([
Quantizer_module(h.n_codes, 512 // h.n_code_groups)
for _ in range(h.n_code_groups)
])
self.quantizer_modules2 = nn.ModuleList([
Quantizer_module(h.n_codes, 512 // h.n_code_groups)
for _ in range(h.n_code_groups)
])
self.h = h
self.codebook_loss_lambda = self.h.codebook_loss_lambda # e.g., 1
self.commitment_loss_lambda = self.h.commitment_loss_lambda # e.g., 0.25
self.residual_layer = 2
self.n_code_groups = h.n_code_groups
def for_one_step(self, xin, idx):
xin = xin.transpose(1, 2)
x = xin.reshape(-1, 512)
x = torch.split(x, 512 // self.h.n_code_groups, dim=-1)
min_indicies = []
z_q = []
if idx == 0:
for _x, m in zip(x, self.quantizer_modules):
_z_q, _min_indicies = m(_x)
z_q.append(_z_q)
min_indicies.append(_min_indicies) # B * T,
z_q = torch.cat(z_q, -1).reshape(xin.shape)
# loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2)
loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \
+ self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2)
z_q = xin + (z_q - xin).detach()
z_q = z_q.transpose(1, 2)
return z_q, loss, min_indicies
else:
for _x, m in zip(x, self.quantizer_modules2):
_z_q, _min_indicies = m(_x)
z_q.append(_z_q)
min_indicies.append(_min_indicies) # B * T,
z_q = torch.cat(z_q, -1).reshape(xin.shape)
# loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean((z_q - xin.detach()) ** 2)
loss = self.codebook_loss_lambda * torch.mean((z_q - xin.detach()) ** 2) \
+ self.commitment_loss_lambda * torch.mean((z_q.detach() - xin) ** 2)
z_q = xin + (z_q - xin).detach()
z_q = z_q.transpose(1, 2)
return z_q, loss, min_indicies
def forward(self, xin):
# B, C, T
quantized_out = 0.0
residual = xin
all_losses = []
all_indices = []
for i in range(self.residual_layer):
quantized, loss, indices = self.for_one_step(residual, i) #
residual = residual - quantized
quantized_out = quantized_out + quantized
all_indices.extend(indices) #
all_losses.append(loss)
all_losses = torch.stack(all_losses)
loss = torch.mean(all_losses)
return quantized_out, loss, all_indices
def embed(self, x):
# idx: N, T, 4
# print('x ', x.shape)
quantized_out = torch.tensor(0.0, device=x.device)
x = torch.split(x, 1, 2) # split, 将最后一个维度分开, 每个属于一个index group
# print('x.shape ', len(x),x[0].shape)
for i in range(self.residual_layer):
ret = []
if i == 0:
for j in range(self.n_code_groups):
q = x[j]
embed = self.quantizer_modules[j]
q = embed.embedding(q.squeeze(-1))
ret.append(q)
ret = torch.cat(ret, -1)
# print(ret.shape)
quantized_out = quantized_out + ret
else:
for j in range(self.n_code_groups):
q = x[j + self.n_code_groups]
embed = self.quantizer_modules2[j]
q = embed.embedding(q.squeeze(-1))
ret.append(q)
ret = torch.cat(ret, -1)
quantized_out = quantized_out + ret
return quantized_out.transpose(1, 2) # N, C, T