Spaces:
Running
on
T4
Running
on
T4
# Written by Shigeki Karita, 2019 | |
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
# Adapted by Florian Lux, 2021 | |
import torch | |
class LayerNorm(torch.nn.LayerNorm): | |
""" | |
Layer normalization module. | |
Args: | |
nout (int): Output dim size. | |
dim (int): Dimension to be normalized. | |
""" | |
def __init__(self, nout, dim=-1, eps=1e-12): | |
""" | |
Construct an LayerNorm object. | |
""" | |
super(LayerNorm, self).__init__(nout, eps=eps) | |
self.dim = dim | |
def forward(self, x): | |
""" | |
Apply layer normalization. | |
Args: | |
x (torch.Tensor): Input tensor. | |
Returns: | |
torch.Tensor: Normalized tensor. | |
""" | |
if self.dim == -1: | |
return super(LayerNorm, self).forward(x) | |
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) | |