Flux9665's picture
update to the current version
70399da
raw
history blame
898 Bytes
# Written by Shigeki Karita, 2019
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
# Adapted by Florian Lux, 2021
import torch
class LayerNorm(torch.nn.LayerNorm):
"""
Layer normalization module.
Args:
nout (int): Output dim size.
dim (int): Dimension to be normalized.
"""
def __init__(self, nout, dim=-1, eps=1e-12):
"""
Construct an LayerNorm object.
"""
super(LayerNorm, self).__init__(nout, eps=eps)
self.dim = dim
def forward(self, x):
"""
Apply layer normalization.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Normalized tensor.
"""
if self.dim == -1:
return super(LayerNorm, self).forward(x)
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)