MassivelyMultilingualTTS / Utility /WarmupScheduler.py
Flux9665's picture
use explicit code instead of relying on release download
9e275b8
raw
history blame
3.22 kB
from torch.optim.lr_scheduler import _LRScheduler
# This is rather suboptimal, because we need to import a protected class. Unfortunately, I don't see another way.
class ToucanWarmupScheduler(_LRScheduler):
"""
A warmup scheduler that should be called after every batch.
"""
def __init__(self, optimizer, peak_lr=0.0002, warmup_steps=20000, max_steps=200000, last_epoch=-1):
self.warmup_steps = warmup_steps
self.peak_lr = peak_lr
self.max_steps = max_steps
self.plateau = self.warmup_steps * 4
self.last_lr = 0.0
# __init__() must be invoked before setting field
# because step() is also invoked in __init__()
super().__init__(optimizer, last_epoch)
def __repr__(self):
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
def get_lr(self):
step_num = self.last_epoch + 1
if step_num <= self.warmup_steps:
lr = self.peak_lr * min(step_num / self.warmup_steps, 1.0)
self.last_lr = lr
return [lr for _ in self.base_lrs]
elif step_num < self.warmup_steps + self.plateau:
self.last_lr = self.peak_lr
return [self.peak_lr for _ in self.base_lrs]
else:
scale = 1 - (((step_num - (self.warmup_steps + self.plateau)) / self.max_steps) / (self.max_steps / 10))
self.last_lr = max(self.last_lr * scale, 1e-7)
return [self.last_lr for _ in self.base_lrs]
class WarmupScheduler(_LRScheduler):
"""
The WarmupLR scheduler
This scheduler is almost same as NoamLR Scheduler except for following difference:
NoamLR:
lr = optimizer.lr * model_size ** -0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
WarmupLR:
lr = optimizer.lr * warmup_step ** 0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
Note that the maximum lr equals to optimizer.lr in this scheduler.
Taken from ESPnet
"""
def __init__(self, optimizer, warmup_steps=25000, last_epoch=-1):
self.warmup_steps = warmup_steps
# __init__() must be invoked before setting field
# because step() is also invoked in __init__()
super().__init__(optimizer, last_epoch)
def __repr__(self):
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
def get_lr(self):
step_num = self.last_epoch + 1
return [lr * self.warmup_steps ** 0.5 * min(step_num ** -0.5, step_num * self.warmup_steps ** -1.5) for lr in
self.base_lrs]
if __name__ == '__main__':
lrs = list()
warmup_steps = 30000
peak_lr = 0.0005
max_steps = 800000
plateau_size = warmup_steps * 5
for step_num in range(max_steps):
if step_num <= warmup_steps:
lr = peak_lr * min(step_num / warmup_steps, 1.0)
lrs.append(lr)
elif step_num < warmup_steps + plateau_size:
lrs.append(peak_lr)
else:
scale = 1 - (((step_num - (warmup_steps + plateau_size)) / max_steps) / (max_steps / 10))
lrs.append(max(lrs[-1] * scale, 1e-7))
import matplotlib.pyplot as plt
plt.plot(lrs)
plt.show()