Spaces:
Running
on
T4
Running
on
T4
| # Copyright (c) 2022 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
| # LICENSE is in incl_licenses directory. | |
| from alias_free_torch import * | |
| from alias_free_torch import Activation1d | |
| from torch.nn import Conv1d | |
| from torch.nn.utils import remove_weight_norm | |
| from torch.nn.utils import weight_norm | |
| from Architectures.Vocoder.Snake import SnakeBeta | |
| LRELU_SLOPE = 0.1 | |
| class AMPBlock1(torch.nn.Module): | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super(AMPBlock1, self).__init__() | |
| self.convs1 = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
| padding=get_padding(kernel_size, dilation[0]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
| padding=get_padding(kernel_size, dilation[1]))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
| padding=get_padding(kernel_size, dilation[2]))) | |
| ]) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = nn.ModuleList([ | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))), | |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
| padding=get_padding(kernel_size, 1))) | |
| ]) | |
| self.convs2.apply(init_weights) | |
| self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers | |
| self.activations = nn.ModuleList([ | |
| Activation1d( | |
| activation=SnakeBeta(channels, alpha_logscale=True)) | |
| for _ in range(self.num_layers) | |
| ]) | |
| def forward(self, x): | |
| acts1, acts2 = self.activations[::2], self.activations[1::2] | |
| for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): | |
| xt = a1(x) | |
| xt = c1(xt) | |
| xt = a2(xt) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| def apply_weight_norm(m): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| weight_norm(m) | |
| def get_padding(kernel_size, dilation=1): | |
| return int((kernel_size * dilation - dilation) / 2) | |