Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # | |
| # This implementation is inspired from | |
| # https://github.com/lucidrains/vector-quantize-pytorch | |
| # which is released under MIT License. Hereafter, the original license: | |
| # MIT License | |
| # | |
| # Copyright (c) 2020 Phil Wang | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| """Core vector quantization implementation.""" | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from einops import repeat | |
| from torch import nn | |
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| """Torch distributed utilities.""" | |
| import typing as tp | |
| import torch | |
| def rank(): | |
| if torch.distributed.is_initialized(): | |
| return torch.distributed.get_rank() | |
| else: | |
| return 0 | |
| def world_size(): | |
| if torch.distributed.is_initialized(): | |
| return torch.distributed.get_world_size() | |
| else: | |
| return 1 | |
| def is_distributed(): | |
| return world_size() > 1 | |
| def all_reduce(tensor: torch.Tensor, op=torch.distributed.ReduceOp.SUM): | |
| if is_distributed(): | |
| return torch.distributed.all_reduce(tensor, op) | |
| def _is_complex_or_float(tensor): | |
| return torch.is_floating_point(tensor) or torch.is_complex(tensor) | |
| def _check_number_of_params(params: tp.List[torch.Tensor]): | |
| # utility function to check that the number of params in all workers is the same, | |
| # and thus avoid a deadlock with distributed all reduce. | |
| if not is_distributed() or not params: | |
| return | |
| # print('params[0].device ', params[0].device) | |
| tensor = torch.tensor( | |
| [len(params)], device=params[0].device, dtype=torch.long) | |
| all_reduce(tensor) | |
| if tensor.item() != len(params) * world_size(): | |
| # If not all the workers have the same number, for at least one of them, | |
| # this inequality will be verified. | |
| raise RuntimeError( | |
| f"Mismatch in number of params: ours is {len(params)}, " | |
| "at least one worker has a different one.") | |
| def broadcast_tensors(tensors: tp.Iterable[torch.Tensor], src: int = 0): | |
| """Broadcast the tensors from the given parameters to all workers. | |
| This can be used to ensure that all workers have the same model to start with. | |
| """ | |
| if not is_distributed(): | |
| return | |
| tensors = [tensor for tensor in tensors if _is_complex_or_float(tensor)] | |
| _check_number_of_params(tensors) | |
| handles = [] | |
| for tensor in tensors: | |
| # src = int(rank()) # added code | |
| handle = torch.distributed.broadcast( | |
| tensor.data, src=src, async_op=True) | |
| handles.append(handle) | |
| for handle in handles: | |
| handle.wait() | |
| def sync_buffer(buffers, average=True): | |
| """ | |
| Sync grad for buffers. If average is False, broadcast instead of averaging. | |
| """ | |
| if not is_distributed(): | |
| return | |
| handles = [] | |
| for buffer in buffers: | |
| if torch.is_floating_point(buffer.data): | |
| if average: | |
| handle = torch.distributed.all_reduce( | |
| buffer.data, | |
| op=torch.distributed.ReduceOp.SUM, | |
| async_op=True) | |
| else: | |
| handle = torch.distributed.broadcast( | |
| buffer.data, src=0, async_op=True) | |
| handles.append((buffer, handle)) | |
| for buffer, handle in handles: | |
| handle.wait() | |
| if average: | |
| buffer.data /= world_size | |
| def sync_grad(params): | |
| """ | |
| Simpler alternative to DistributedDataParallel, that doesn't rely | |
| on any black magic. For simple models it can also be as fast. | |
| Just call this on your model parameters after the call to backward! | |
| """ | |
| if not is_distributed(): | |
| return | |
| handles = [] | |
| for p in params: | |
| if p.grad is not None: | |
| handle = torch.distributed.all_reduce( | |
| p.grad.data, op=torch.distributed.ReduceOp.SUM, async_op=True) | |
| handles.append((p, handle)) | |
| for p, handle in handles: | |
| handle.wait() | |
| p.grad.data /= world_size() | |
| def average_metrics(metrics: tp.Dict[str, float], count=1.): | |
| """Average a dictionary of metrics across all workers, using the optional | |
| `count` as unormalized weight. | |
| """ | |
| if not is_distributed(): | |
| return metrics | |
| keys, values = zip(*metrics.items()) | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| tensor = torch.tensor( | |
| list(values) + [1], device=device, dtype=torch.float32) | |
| tensor *= count | |
| all_reduce(tensor) | |
| averaged = (tensor[:-1] / tensor[-1]).cpu().tolist() | |
| return dict(zip(keys, averaged)) | |
| def default(val: tp.Any, d: tp.Any) -> tp.Any: | |
| return val if val is not None else d | |
| def ema_inplace(moving_avg, new, decay: float): | |
| moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
| def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5): | |
| return (x + epsilon) / (x.sum() + n_categories * epsilon) | |
| def uniform_init(*shape: int): | |
| t = torch.empty(shape) | |
| nn.init.kaiming_uniform_(t) | |
| return t | |
| def sample_vectors(samples, num: int): | |
| num_samples, device = samples.shape[0], samples.device | |
| if num_samples >= num: | |
| indices = torch.randperm(num_samples, device=device)[:num] | |
| else: | |
| indices = torch.randint(0, num_samples, (num,), device=device) | |
| return samples[indices] | |
| def kmeans(samples, num_clusters: int, num_iters: int = 10): | |
| dim, dtype = samples.shape[-1], samples.dtype | |
| means = sample_vectors(samples, num_clusters) | |
| for _ in range(num_iters): | |
| diffs = rearrange(samples, "n d -> n () d") - rearrange(means, | |
| "c d -> () c d") | |
| dists = -(diffs ** 2).sum(dim=-1) | |
| buckets = dists.max(dim=-1).indices | |
| bins = torch.bincount(buckets, minlength=num_clusters) | |
| zero_mask = bins == 0 | |
| bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
| new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) | |
| new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) | |
| new_means = new_means / bins_min_clamped[..., None] | |
| means = torch.where(zero_mask[..., None], means, new_means) | |
| return means, bins | |
| class EuclideanCodebook(nn.Module): | |
| """Codebook with Euclidean distance. | |
| Args: | |
| dim (int): Dimension. | |
| codebook_size (int): Codebook size. | |
| kmeans_init (bool): Whether to use k-means to initialize the codebooks. | |
| If set to true, run the k-means algorithm on the first training batch and use | |
| the learned centroids as initialization. | |
| kmeans_iters (int): Number of iterations used for k-means algorithm at initialization. | |
| decay (float): Decay for exponential moving average over the codebooks. | |
| epsilon (float): Epsilon value for numerical stability. | |
| threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
| that have an exponential moving average cluster size less than the specified threshold with | |
| randomly selected vector from the current batch. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| codebook_size: int, | |
| kmeans_init: int = False, | |
| kmeans_iters: int = 10, | |
| decay: float = 0.99, | |
| epsilon: float = 1e-5, | |
| threshold_ema_dead_code: int = 2, ): | |
| super().__init__() | |
| self.decay = decay | |
| init_fn: tp.Union[ | |
| tp.Callable[..., torch.Tensor], | |
| tp.Any] = uniform_init if not kmeans_init else torch.zeros | |
| embed = init_fn(codebook_size, dim) | |
| self.codebook_size = codebook_size | |
| self.kmeans_iters = kmeans_iters | |
| self.epsilon = epsilon | |
| self.threshold_ema_dead_code = threshold_ema_dead_code | |
| self.register_buffer("inited", torch.Tensor([not kmeans_init])) | |
| self.register_buffer("cluster_size", torch.zeros(codebook_size)) | |
| self.register_buffer("embed", embed) | |
| self.register_buffer("embed_avg", embed.clone()) | |
| def init_embed_(self, data): | |
| if self.inited: | |
| return | |
| embed, cluster_size = kmeans(data, self.codebook_size, | |
| self.kmeans_iters) | |
| self.embed.data.copy_(embed) | |
| self.embed_avg.data.copy_(embed.clone()) | |
| self.cluster_size.data.copy_(cluster_size) | |
| self.inited.data.copy_(torch.Tensor([True])) | |
| # Make sure all buffers across workers are in sync after initialization | |
| broadcast_tensors(self.buffers()) | |
| def replace_(self, samples, mask): | |
| modified_codebook = torch.where( | |
| mask[..., None], | |
| sample_vectors(samples, self.codebook_size), self.embed) | |
| self.embed.data.copy_(modified_codebook) | |
| def expire_codes_(self, batch_samples): | |
| if self.threshold_ema_dead_code == 0: | |
| return | |
| expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
| if not torch.any(expired_codes): | |
| return | |
| batch_samples = rearrange(batch_samples, "... d -> (...) d") | |
| self.replace_(batch_samples, mask=expired_codes) | |
| broadcast_tensors(self.buffers()) | |
| def preprocess(self, x): | |
| x = rearrange(x, "... d -> (...) d") | |
| return x | |
| def quantize(self, x): | |
| embed = self.embed.t() | |
| dist = -(x.pow(2).sum(1, keepdim=True) - 2 * x @ embed + | |
| embed.pow(2).sum(0, keepdim=True)) | |
| embed_ind = dist.max(dim=-1).indices | |
| return embed_ind | |
| def postprocess_emb(self, embed_ind, shape): | |
| return embed_ind.view(*shape[:-1]) | |
| def dequantize(self, embed_ind): | |
| quantize = F.embedding(embed_ind, self.embed) | |
| return quantize | |
| def encode(self, x): | |
| shape = x.shape | |
| # pre-process | |
| x = self.preprocess(x) | |
| # quantize | |
| embed_ind = self.quantize(x) | |
| # post-process | |
| embed_ind = self.postprocess_emb(embed_ind, shape) | |
| return embed_ind | |
| def decode(self, embed_ind): | |
| quantize = self.dequantize(embed_ind) | |
| return quantize | |
| def forward(self, x): | |
| shape, dtype = x.shape, x.dtype | |
| x = self.preprocess(x) | |
| self.init_embed_(x) | |
| embed_ind = self.quantize(x) | |
| embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
| embed_ind = self.postprocess_emb(embed_ind, shape) | |
| quantize = self.dequantize(embed_ind) | |
| if self.training: | |
| # We do the expiry of code at that point as buffers are in sync | |
| # and all the workers will take the same decision. | |
| self.expire_codes_(x) | |
| ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) | |
| embed_sum = x.t() @ embed_onehot | |
| ema_inplace(self.embed_avg, embed_sum.t(), self.decay) | |
| cluster_size = ( | |
| laplace_smoothing(self.cluster_size, self.codebook_size, | |
| self.epsilon) * self.cluster_size.sum()) | |
| embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) | |
| self.embed.data.copy_(embed_normalized) | |
| return quantize, embed_ind | |
| class VectorQuantization(nn.Module): | |
| """Vector quantization implementation. | |
| Currently supports only euclidean distance. | |
| Args: | |
| dim (int): Dimension | |
| codebook_size (int): Codebook size | |
| codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. | |
| decay (float): Decay for exponential moving average over the codebooks. | |
| epsilon (float): Epsilon value for numerical stability. | |
| kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
| kmeans_iters (int): Number of iterations used for kmeans initialization. | |
| threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
| that have an exponential moving average cluster size less than the specified threshold with | |
| randomly selected vector from the current batch. | |
| commitment_weight (float): Weight for commitment loss. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| codebook_size: int, | |
| codebook_dim: tp.Optional[int] = None, | |
| decay: float = 0.99, | |
| epsilon: float = 1e-5, | |
| kmeans_init: bool = True, | |
| kmeans_iters: int = 50, | |
| threshold_ema_dead_code: int = 2, | |
| commitment_weight: float = 1., ): | |
| super().__init__() | |
| _codebook_dim: int = default(codebook_dim, dim) | |
| requires_projection = _codebook_dim != dim | |
| self.project_in = (nn.Linear(dim, _codebook_dim) | |
| if requires_projection else nn.Identity()) | |
| self.project_out = (nn.Linear(_codebook_dim, dim) | |
| if requires_projection else nn.Identity()) | |
| self.epsilon = epsilon | |
| self.commitment_weight = commitment_weight | |
| self._codebook = EuclideanCodebook( | |
| dim=_codebook_dim, | |
| codebook_size=codebook_size, | |
| kmeans_init=kmeans_init, | |
| kmeans_iters=kmeans_iters, | |
| decay=decay, | |
| epsilon=epsilon, | |
| threshold_ema_dead_code=threshold_ema_dead_code) | |
| self.codebook_size = codebook_size | |
| def codebook(self): | |
| return self._codebook.embed | |
| def encode(self, x): | |
| x = rearrange(x, "b d n -> b n d") | |
| x = self.project_in(x) | |
| embed_in = self._codebook.encode(x) | |
| return embed_in | |
| def decode(self, embed_ind): | |
| quantize = self._codebook.decode(embed_ind) | |
| quantize = self.project_out(quantize) | |
| if len(quantize.size()) < 3: | |
| quantize = quantize.unsqueeze(0) | |
| quantize = rearrange(quantize, "b n d -> b d n") | |
| return quantize | |
| def forward(self, x): | |
| device = x.device | |
| x = rearrange(x, "b d n -> b n d") | |
| x = self.project_in(x) | |
| quantize, embed_ind = self._codebook(x) | |
| if self.training: | |
| quantize = x + (quantize - x).detach() | |
| loss = torch.tensor([0.0], device=device, requires_grad=self.training) | |
| if self.training: | |
| if self.commitment_weight > 0: | |
| commit_loss = F.mse_loss(quantize.detach(), x) | |
| loss = loss + commit_loss * self.commitment_weight | |
| quantize = self.project_out(quantize) | |
| quantize = rearrange(quantize, "b n d -> b d n") | |
| return quantize, embed_ind, loss | |
| class ResidualVectorQuantization(nn.Module): | |
| """Residual vector quantization implementation. | |
| Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf | |
| """ | |
| def __init__(self, *, num_quantizers, **kwargs): | |
| super().__init__() | |
| self.layers = nn.ModuleList( | |
| [VectorQuantization(**kwargs) for _ in range(num_quantizers)]) | |
| def forward(self, x, n_q: tp.Optional[int] = None): | |
| quantized_out = 0.0 | |
| residual = x | |
| all_losses = [] | |
| all_indices = [] | |
| n_q = n_q or len(self.layers) | |
| for layer in self.layers[:n_q]: | |
| quantized, indices, loss = layer(residual) | |
| residual = residual - quantized | |
| quantized_out = quantized_out + quantized | |
| all_indices.append(indices) | |
| all_losses.append(loss) | |
| out_losses, out_indices = map(torch.stack, (all_losses, all_indices)) | |
| return quantized_out, out_indices, out_losses | |
| def encode(self, | |
| x: torch.Tensor, | |
| n_q: tp.Optional[int] = None, | |
| st: tp.Optional[int] = None) -> torch.Tensor: | |
| residual = x | |
| all_indices = [] | |
| n_q = n_q or len(self.layers) | |
| st = st or 0 | |
| for layer in self.layers[st:n_q]: # 设置解码的起止layer | |
| indices = layer.encode(residual) | |
| quantized = layer.decode(indices) | |
| residual = residual - quantized | |
| all_indices.append(indices) | |
| out_indices = torch.stack(all_indices) | |
| return out_indices | |
| def decode(self, q_indices: torch.Tensor) -> torch.Tensor: | |
| quantized_out = torch.tensor(0.0, device=q_indices.device) | |
| for i, indices in enumerate(q_indices): | |
| layer = self.layers[i] | |
| quantized = layer.decode(indices) | |
| quantized_out = quantized_out + quantized | |
| return quantized_out | |
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| """Residual vector quantizer implementation.""" | |
| from dataclasses import dataclass, field | |
| import math | |
| import typing as tp | |
| import torch | |
| from torch import nn | |
| class QuantizedResult: | |
| quantized: torch.Tensor | |
| codes: torch.Tensor | |
| bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item. | |
| penalty: tp.Optional[torch.Tensor] = None | |
| metrics: dict = field(default_factory=dict) | |
| class ResidualVectorQuantizer(nn.Module): | |
| """Residual Vector Quantizer. | |
| Args: | |
| dimension (int): Dimension of the codebooks. | |
| n_q (int): Number of residual vector quantizers used. | |
| bins (int): Codebook size. | |
| decay (float): Decay for exponential moving average over the codebooks. | |
| kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
| kmeans_iters (int): Number of iterations used for kmeans initialization. | |
| threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
| that have an exponential moving average cluster size less than the specified threshold with | |
| randomly selected vector from the current batch. | |
| """ | |
| def __init__( | |
| self, | |
| dimension: int = 256, | |
| n_q: int = 8, | |
| bins: int = 1024, | |
| decay: float = 0.99, | |
| kmeans_init: bool = True, | |
| kmeans_iters: int = 50, | |
| threshold_ema_dead_code: int = 2, | |
| ): | |
| super().__init__() | |
| self.n_q = n_q | |
| self.dimension = dimension | |
| self.bins = bins | |
| self.decay = decay | |
| self.kmeans_init = kmeans_init | |
| self.kmeans_iters = kmeans_iters | |
| self.threshold_ema_dead_code = threshold_ema_dead_code | |
| self.vq = ResidualVectorQuantization( | |
| dim=self.dimension, | |
| codebook_size=self.bins, | |
| num_quantizers=self.n_q, | |
| decay=self.decay, | |
| kmeans_init=self.kmeans_init, | |
| kmeans_iters=self.kmeans_iters, | |
| threshold_ema_dead_code=self.threshold_ema_dead_code, | |
| ) | |
| def forward(self, x: torch.Tensor, sample_rate: int, bandwidth: tp.Optional[float] = None) -> QuantizedResult: | |
| """Residual vector quantization on the given input tensor. | |
| Args: | |
| x (torch.Tensor): Input tensor. | |
| sample_rate (int): Sample rate of the input tensor. | |
| bandwidth (float): Target bandwidth. | |
| Returns: | |
| QuantizedResult: | |
| The quantized (or approximately quantized) representation with | |
| the associated bandwidth and any penalty term for the loss. | |
| """ | |
| bw_per_q = self.get_bandwidth_per_quantizer(sample_rate) | |
| n_q = self.get_num_quantizers_for_bandwidth(sample_rate, bandwidth) | |
| quantized, codes, commit_loss = self.vq(x, n_q=n_q) | |
| bw = torch.tensor(n_q * bw_per_q).to(x) | |
| return quantized, codes, bw, torch.mean(commit_loss) | |
| # return QuantizedResult(quantized, codes, bw, penalty=torch.mean(commit_loss)) | |
| def get_num_quantizers_for_bandwidth(self, sample_rate: int, bandwidth: tp.Optional[float] = None) -> int: | |
| """Return n_q based on specified target bandwidth. | |
| """ | |
| bw_per_q = self.get_bandwidth_per_quantizer(sample_rate) | |
| n_q = self.n_q | |
| if bandwidth and bandwidth > 0.: | |
| n_q = int(max(1, math.floor(bandwidth / bw_per_q))) | |
| return n_q | |
| def get_bandwidth_per_quantizer(self, sample_rate: int): | |
| """Return bandwidth per quantizer for a given input sample rate. | |
| """ | |
| return math.log2(self.bins) * sample_rate / 1000 | |
| def encode(self, x: torch.Tensor, sample_rate: int, bandwidth: tp.Optional[float] = None, st: tp.Optional[int] = None) -> torch.Tensor: | |
| """Encode a given input tensor with the specified sample rate at the given bandwidth. | |
| The RVQ encode method sets the appropriate number of quantizer to use | |
| and returns indices for each quantizer. | |
| """ | |
| n_q = self.get_num_quantizers_for_bandwidth(sample_rate, bandwidth) | |
| st = st or 0 | |
| codes = self.vq.encode(x, n_q=n_q, st=st) | |
| return codes | |
| def decode(self, codes: torch.Tensor) -> torch.Tensor: | |
| """Decode the given codes to the quantized representation. | |
| """ | |
| quantized = self.vq.decode(codes) | |
| return quantized | |