Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2021 Tomoki Hayashi | |
# MIT License (https://opensource.org/licenses/MIT) | |
# Adapted by Florian Lux 2021 | |
# This code is based on https://github.com/jik876/hifi-gan. | |
import torch | |
from Architectures.GeneralLayers.ResidualBlock import HiFiGANResidualBlock as ResidualBlock | |
class HiFiGAN(torch.nn.Module): | |
def __init__(self, | |
in_channels=128, | |
out_channels=1, | |
channels=512, | |
kernel_size=7, | |
upsample_scales=(8, 6, 4, 2), # CAREFUL: Avocodo assumes that there are always 4 upsample scales, because it takes intermediate results. | |
upsample_kernel_sizes=(16, 12, 8, 4), | |
resblock_kernel_sizes=(3, 7, 11), | |
resblock_dilations=((1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
use_additional_convs=True, | |
bias=True, | |
nonlinear_activation="LeakyReLU", | |
nonlinear_activation_params={"negative_slope": 0.1}, | |
weights=None): | |
""" | |
Initialize HiFiGANGenerator module. | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
channels (int): Number of hidden representation channels. | |
kernel_size (int): Kernel size of initial and final conv layer. | |
upsample_scales (list): List of upsampling scales. | |
upsample_kernel_sizes (list): List of kernel sizes for upsampling layers. | |
resblock_kernel_sizes (list): List of kernel sizes for residual blocks. | |
resblock_dilations (list): List of dilation list for residual blocks. | |
use_additional_convs (bool): Whether to use additional conv layers in residual blocks. | |
bias (bool): Whether to add bias parameter in convolution layers. | |
nonlinear_activation (str): Activation function module name. | |
nonlinear_activation_params (dict): Hyperparameters for activation function. | |
use_weight_norm (bool): Whether to use weight norm. | |
If set to true, it will be applied to all of the conv layers. | |
""" | |
super().__init__() | |
# check hyperparameters are valid | |
assert kernel_size % 2 == 1, "Kernel size must be odd number." | |
assert len(upsample_scales) == len(upsample_kernel_sizes) | |
assert len(resblock_dilations) == len(resblock_kernel_sizes) | |
# define modules | |
self.num_upsamples = len(upsample_kernel_sizes) | |
self.num_blocks = len(resblock_kernel_sizes) | |
self.input_conv = torch.nn.Conv1d(in_channels, | |
channels, | |
kernel_size, | |
1, | |
padding=(kernel_size - 1) // 2, ) | |
self.upsamples = torch.nn.ModuleList() | |
self.blocks = torch.nn.ModuleList() | |
for i in range(len(upsample_kernel_sizes)): | |
self.upsamples += [torch.nn.Sequential(getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
torch.nn.ConvTranspose1d(channels // (2 ** i), | |
channels // (2 ** (i + 1)), | |
upsample_kernel_sizes[i], | |
upsample_scales[i], | |
padding=(upsample_kernel_sizes[i] - upsample_scales[i]) // 2, ), )] | |
for j in range(len(resblock_kernel_sizes)): | |
self.blocks += [ResidualBlock(kernel_size=resblock_kernel_sizes[j], | |
channels=channels // (2 ** (i + 1)), | |
dilations=resblock_dilations[j], | |
bias=bias, | |
use_additional_convs=use_additional_convs, | |
nonlinear_activation=nonlinear_activation, | |
nonlinear_activation_params=nonlinear_activation_params, )] | |
self.output_conv = torch.nn.Sequential( | |
# NOTE(kan-bayashi): follow official implementation but why | |
# using different slope parameter here? (0.1 vs. 0.01) | |
torch.nn.LeakyReLU(), | |
torch.nn.Conv1d(channels // (2 ** (i + 1)), | |
out_channels, | |
kernel_size, | |
1, | |
padding=(kernel_size - 1) // 2, ), torch.nn.Tanh(), ) | |
self.out_proj_x1 = torch.nn.Conv1d(channels // 4, 1, 7, 1, padding=3) | |
self.out_proj_x2 = torch.nn.Conv1d(channels // 8, 1, 7, 1, padding=3) | |
# apply weight norm | |
self.apply_weight_norm() | |
# reset parameters | |
self.reset_parameters() | |
if weights is not None: | |
self.load_state_dict(weights) | |
def forward(self, c): | |
""" | |
Calculate forward propagation. | |
Args: | |
c (Tensor): Input tensor (B, in_channels, T). | |
Returns: | |
Tensor: Output tensor (B, out_channels, T). | |
Tensor: intermediate result | |
Tensor: another intermediate result | |
""" | |
c = self.input_conv(c) | |
for i in range(self.num_upsamples): | |
c = self.upsamples[i](c) | |
cs = 0.0 # initialize | |
for j in range(self.num_blocks): | |
cs += self.blocks[i * self.num_blocks + j](c) | |
c = cs / self.num_blocks | |
if i == 1: | |
x1 = self.out_proj_x1(c) | |
elif i == 2: | |
x2 = self.out_proj_x2(c) | |
c = self.output_conv(c) | |
return c, x2, x1 | |
def reset_parameters(self): | |
""" | |
Reset parameters. | |
This initialization follows the official implementation manner. | |
https://github.com/jik876/hifi-gan/blob/master/models.py | |
""" | |
def _reset_parameters(m): | |
if isinstance(m, (torch.nn.Conv1d, torch.nn.ConvTranspose1d)): | |
m.weight.data.normal_(0.0, 0.01) | |
self.apply(_reset_parameters) | |
def remove_weight_norm(self): | |
""" | |
Remove weight normalization module from all of the layers. | |
""" | |
def _remove_weight_norm(m): | |
try: | |
torch.nn.utils.remove_weight_norm(m) | |
except ValueError: # this module didn't have weight norm | |
return | |
self.apply(_remove_weight_norm) | |
def apply_weight_norm(self): | |
""" | |
Apply weight normalization module from all of the layers. | |
""" | |
def _apply_weight_norm(m): | |
if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.ConvTranspose1d): | |
torch.nn.utils.weight_norm(m) | |
self.apply(_apply_weight_norm) | |
def inference(self, c, normalize_before=False): | |
""" | |
Perform inference. | |
Args: | |
c (Union[Tensor, ndarray]): Input tensor (T, in_channels). | |
normalize_before (bool): Whether to perform normalization. | |
Returns: | |
Tensor: Output tensor (T ** prod(upsample_scales), out_channels). | |
""" | |
if not isinstance(c, torch.Tensor): | |
c = torch.tensor(c, dtype=torch.float).to(next(self.parameters()).device) | |
if normalize_before: | |
c = (c - self.mean) / self.scale | |
c = self.forward(c.transpose(1, 0).unsqueeze(0)) | |
return c.squeeze(0).transpose(1, 0) | |
if __name__ == "__main__": | |
hifi = HiFiGAN() | |
print(f"HiFiGAN parameter count: {sum(p.numel() for p in hifi.parameters() if p.requires_grad)}") |