EnglishToucan / Architectures /ToucanTTS /StochasticToucanTTSLoss.py
Flux9665's picture
initial commit
6faeba1
raw
history blame
1.34 kB
"""
Taken from ESPNet
Adapted by Flux
"""
import torch
from Utility.utils import make_non_pad_mask
class StochasticToucanTTSLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.l1_criterion = torch.nn.L1Loss(reduction="none")
def forward(self, predicted_features, gold_features, features_lengths):
"""
Args:
predicted_features (Tensor): Batch of outputs (B, Lmax, odim).
gold_features (Tensor): Batch of target features (B, Lmax, odim).
features_lengths (LongTensor): Batch of the lengths of each target (B,).
Returns:
Tensor: L1 loss value.
"""
# calculate loss
l1_loss = self.l1_criterion(predicted_features, gold_features)
# make weighted mask and apply it
out_masks = make_non_pad_mask(features_lengths).unsqueeze(-1).to(gold_features.device)
out_masks = torch.nn.functional.pad(out_masks.transpose(1, 2), [0, gold_features.size(1) - out_masks.size(1), 0, 0, 0, 0], value=False).transpose(1, 2)
out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float()
out_weights /= gold_features.size(0) * gold_features.size(2)
# apply weight
l1_loss = l1_loss.mul(out_weights).masked_select(out_masks).sum()
return l1_loss