Spaces:
Running
on
Zero
Running
on
Zero
from collections import OrderedDict | |
import torch | |
from torchaudio.transforms import Resample | |
from Preprocessing.Codec.encodec import EnCodec | |
class CodecAudioPreprocessor: | |
def __init__(self, input_sr, output_sr=16000, device="cpu", path_to_model="Preprocessing/Codec/encodec_16k_320d.pt"): | |
self.device = device | |
self.input_sr = input_sr | |
self.output_sr = output_sr | |
self.resample = Resample(orig_freq=input_sr, new_freq=output_sr).to(self.device) | |
self.model = EnCodec(n_filters=32, D=512) | |
parameter_dict = torch.load(path_to_model, map_location="cpu") | |
new_state_dict = OrderedDict() | |
for k, v in parameter_dict.items(): | |
name = k[7:] | |
new_state_dict[name] = v | |
self.model.load_state_dict(new_state_dict) | |
remove_encodec_weight_norm(self.model) | |
self.model.eval() | |
self.model.to(device) | |
def resample_audio(self, audio, current_sampling_rate): | |
if current_sampling_rate != self.input_sr: | |
print("warning, change in sampling rate detected. If this happens too often, consider re-ordering the audios so that the sampling rate stays constant for multiple samples") | |
self.resample = Resample(orig_freq=current_sampling_rate, new_freq=self.output_sr).to(self.device) | |
self.input_sr = current_sampling_rate | |
if type(audio) != torch.tensor and type(audio) != torch.Tensor: | |
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) | |
audio = self.resample(audio.float().to(self.device)) | |
return audio | |
def audio_to_codebook_indexes(self, audio, current_sampling_rate): | |
if current_sampling_rate != self.output_sr: | |
audio = self.resample_audio(audio, current_sampling_rate) | |
elif type(audio) != torch.tensor and type(audio) != torch.Tensor: | |
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) | |
return self.model.encode(audio.float().unsqueeze(0).unsqueeze(0).to(self.device)).squeeze() | |
def indexes_to_audio(self, codebook_indexes): | |
return self.model.decode(codebook_indexes).squeeze() | |
def remove_encodec_weight_norm(model): | |
from Preprocessing.Codec.seanet import SConv1d | |
from Preprocessing.Codec.seanet import SConvTranspose1d | |
from Preprocessing.Codec.seanet import SEANetResnetBlock | |
from torch.nn.utils import remove_weight_norm | |
encoder = model.encoder.model | |
for key in encoder._modules: | |
if isinstance(encoder._modules[key], SEANetResnetBlock): | |
remove_weight_norm(encoder._modules[key].shortcut.conv.conv) | |
block_modules = encoder._modules[key].block._modules | |
for skey in block_modules: | |
if isinstance(block_modules[skey], SConv1d): | |
remove_weight_norm(block_modules[skey].conv.conv) | |
elif isinstance(encoder._modules[key], SConv1d): | |
remove_weight_norm(encoder._modules[key].conv.conv) | |
decoder = model.decoder.model | |
for key in decoder._modules: | |
if isinstance(decoder._modules[key], SEANetResnetBlock): | |
remove_weight_norm(decoder._modules[key].shortcut.conv.conv) | |
block_modules = decoder._modules[key].block._modules | |
for skey in block_modules: | |
if isinstance(block_modules[skey], SConv1d): | |
remove_weight_norm(block_modules[skey].conv.conv) | |
elif isinstance(decoder._modules[key], SConvTranspose1d): | |
remove_weight_norm(decoder._modules[key].convtr.convtr) | |
elif isinstance(decoder._modules[key], SConv1d): | |
remove_weight_norm(decoder._modules[key].conv.conv) | |
if __name__ == '__main__': | |
import soundfile | |
import time | |
with torch.inference_mode(): | |
test_audio1 = "../audios/ad01_0000.wav" | |
test_audio2 = "../audios/angry.wav" | |
test_audio3 = "../audios/ry.wav" | |
test_audio4 = "../audios/test.wav" | |
ap = CodecAudioPreprocessor(input_sr=1, path_to_model="Codec/encodec_16k_320d.pt") | |
wav, sr = soundfile.read(test_audio1) | |
indexes_1 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
wav, sr = soundfile.read(test_audio2) | |
indexes_2 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
wav, sr = soundfile.read(test_audio3) | |
indexes_3 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
wav, sr = soundfile.read(test_audio4) | |
indexes_4 = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
print(indexes_4) | |
t0 = time.time() | |
audio1 = ap.indexes_to_audio(indexes_1) | |
audio2 = ap.indexes_to_audio(indexes_2) | |
audio3 = ap.indexes_to_audio(indexes_3) | |
audio4 = ap.indexes_to_audio(indexes_4) | |
t1 = time.time() | |
print(audio1.shape) | |
print(audio2.shape) | |
print(audio3.shape) | |
print(audio4.shape) | |
print(t1 - t0) | |
soundfile.write(file=f"../audios/1_reconstructed_in_{t1 - t0}_encodec.wav", data=audio1, samplerate=16000) | |
soundfile.write(file=f"../audios/2_reconstructed_in_{t1 - t0}_encodec.wav", data=audio2, samplerate=16000) | |
soundfile.write(file=f"../audios/3_reconstructed_in_{t1 - t0}_encodec.wav", data=audio3, samplerate=16000) | |
soundfile.write(file=f"../audios/4_reconstructed_in_{t1 - t0}_encodec.wav", data=audio4, samplerate=16000) | |