Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torchaudio.transforms import Resample | |
class CodecAudioPreprocessor: | |
def __init__(self, input_sr, output_sr=16000, device="cpu"): | |
from dac.model import DAC | |
from dac.utils import load_model | |
self.device = device | |
self.input_sr = input_sr | |
self.output_sr = output_sr | |
self.resample = Resample(orig_freq=input_sr, new_freq=output_sr).to(self.device) | |
self.model = DAC() | |
self.model = load_model(model_type="16kHz", tag="0.0.5") | |
self.model.eval() | |
self.model.to(device) | |
def resample_audio(self, audio, current_sampling_rate): | |
if current_sampling_rate != self.input_sr: | |
print("warning, change in sampling rate detected. If this happens too often, consider re-ordering the audios so that the sampling rate stays constant for multiple samples") | |
self.resample = Resample(orig_freq=current_sampling_rate, new_freq=self.output_sr).to(self.device) | |
self.input_sr = current_sampling_rate | |
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) | |
audio = self.resample(audio) | |
return audio | |
def audio_to_codec_tensor(self, audio, current_sampling_rate): | |
if current_sampling_rate != self.output_sr: | |
audio = self.resample_audio(audio, current_sampling_rate) | |
elif type(audio) != torch.tensor: | |
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) | |
return self.model.encode(audio.unsqueeze(0).unsqueeze(0))[0].squeeze() | |
def audio_to_codebook_indexes(self, audio, current_sampling_rate): | |
if current_sampling_rate != self.output_sr: | |
audio = self.resample_audio(audio, current_sampling_rate) | |
elif type(audio) != torch.tensor: | |
audio = torch.tensor(audio, device=self.device, dtype=torch.float32) | |
return self.model.encode(audio.unsqueeze(0).unsqueeze(0))[1].squeeze() | |
def indexes_to_codec_frames(self, codebook_indexes): | |
if len(codebook_indexes.size()) == 2: | |
codebook_indexes = codebook_indexes.unsqueeze(0) | |
return self.model.quantizer.from_codes(codebook_indexes)[1].squeeze() | |
def indexes_to_audio(self, codebook_indexes): | |
return self.codes_to_audio(self.indexes_to_codec_frames(codebook_indexes)) | |
def codes_to_audio(self, continuous_codes): | |
z_q = 0.0 | |
z_ps = torch.split(continuous_codes, self.model.codebook_dim, dim=0) | |
for i, z_p in enumerate(z_ps): | |
z_q_i = self.model.quantizer.quantizers[i].out_proj(z_p) | |
z_q = z_q + z_q_i | |
return self.model.decode(z_q.unsqueeze(0)).squeeze() | |
if __name__ == '__main__': | |
import soundfile | |
import time | |
with torch.inference_mode(): | |
test_audio = "../audios/ry.wav" | |
wav, sr = soundfile.read(test_audio) | |
ap = CodecAudioPreprocessor(input_sr=sr) | |
indexes = ap.audio_to_codebook_indexes(wav, current_sampling_rate=sr) | |
print(indexes.shape) | |
t0 = time.time() | |
audio = ap.indexes_to_audio(indexes) | |
t1 = time.time() | |
print(audio.shape) | |
print(t1 - t0) | |
soundfile.write(file=f"../audios/ry_reconstructed_in_{t1 - t0}_descript.wav", data=audio, samplerate=16000) | |