SDXL-Flash / app.py
KingNish's picture
Update app.py
4c99be6 verified
raw
history blame
4.05 kB
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
import torch
import spaces
device = "cuda"
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash")
pipe = pipe.to(device)
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=20,queue=False)
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
"Alien holding board with word flash on it",
]
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("""# SDXL Flash
### Super fast text to Image Generator.
### <span style='color: red;'>You may change the steps from 5 to 8 or 10, if you didn't get satisfied results.
### First Image processing takes time then images generate faster.""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value = "Ugly, malformed, noise, blur, watermark, distorted",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=5,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
demo.queue().launch()