Spaces:
Build error
Build error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Utilities to save and load models. | |
""" | |
from contextlib import contextmanager | |
import functools | |
import hashlib | |
import inspect | |
import io | |
from pathlib import Path | |
import warnings | |
from omegaconf import OmegaConf | |
from diffq import DiffQuantizer, UniformQuantizer, restore_quantized_state | |
import torch | |
def get_quantizer(model, args, optimizer=None): | |
"""Return the quantizer given the XP quantization args.""" | |
quantizer = None | |
if args.diffq: | |
quantizer = DiffQuantizer( | |
model, min_size=args.min_size, group_size=args.group_size) | |
if optimizer is not None: | |
quantizer.setup_optimizer(optimizer) | |
elif args.qat: | |
quantizer = UniformQuantizer( | |
model, bits=args.qat, min_size=args.min_size) | |
return quantizer | |
def load_model(path_or_package, strict=False): | |
"""Load a model from the given serialized model, either given as a dict (already loaded) | |
or a path to a file on disk.""" | |
if isinstance(path_or_package, dict): | |
package = path_or_package | |
elif isinstance(path_or_package, (str, Path)): | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
path = path_or_package | |
package = torch.load(path, 'cpu') | |
else: | |
raise ValueError(f"Invalid type for {path_or_package}.") | |
klass = package["klass"] | |
args = package["args"] | |
kwargs = package["kwargs"] | |
if strict: | |
model = klass(*args, **kwargs) | |
else: | |
sig = inspect.signature(klass) | |
for key in list(kwargs): | |
if key not in sig.parameters: | |
warnings.warn("Dropping inexistant parameter " + key) | |
del kwargs[key] | |
model = klass(*args, **kwargs) | |
state = package["state"] | |
set_state(model, state) | |
return model | |
def get_state(model, quantizer, half=False): | |
"""Get the state from a model, potentially with quantization applied. | |
If `half` is True, model are stored as half precision, which shouldn't impact performance | |
but half the state size.""" | |
if quantizer is None: | |
dtype = torch.half if half else None | |
state = {k: p.data.to(device='cpu', dtype=dtype) for k, p in model.state_dict().items()} | |
else: | |
state = quantizer.get_quantized_state() | |
state['__quantized'] = True | |
return state | |
def set_state(model, state, quantizer=None): | |
"""Set the state on a given model.""" | |
if state.get('__quantized'): | |
if quantizer is not None: | |
quantizer.restore_quantized_state(model, state['quantized']) | |
else: | |
restore_quantized_state(model, state) | |
else: | |
model.load_state_dict(state) | |
return state | |
def save_with_checksum(content, path): | |
"""Save the given value on disk, along with a sha256 hash. | |
Should be used with the output of either `serialize_model` or `get_state`.""" | |
buf = io.BytesIO() | |
torch.save(content, buf) | |
sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8] | |
path = path.parent / (path.stem + "-" + sig + path.suffix) | |
path.write_bytes(buf.getvalue()) | |
def serialize_model(model, training_args, quantizer=None, half=True): | |
args, kwargs = model._init_args_kwargs | |
klass = model.__class__ | |
state = get_state(model, quantizer, half) | |
return { | |
'klass': klass, | |
'args': args, | |
'kwargs': kwargs, | |
'state': state, | |
'training_args': OmegaConf.to_container(training_args, resolve=True), | |
} | |
def copy_state(state): | |
return {k: v.cpu().clone() for k, v in state.items()} | |
def swap_state(model, state): | |
""" | |
Context manager that swaps the state of a model, e.g: | |
# model is in old state | |
with swap_state(model, new_state): | |
# model in new state | |
# model back to old state | |
""" | |
old_state = copy_state(model.state_dict()) | |
model.load_state_dict(state, strict=False) | |
try: | |
yield | |
finally: | |
model.load_state_dict(old_state) | |
def capture_init(init): | |
def __init__(self, *args, **kwargs): | |
self._init_args_kwargs = (args, kwargs) | |
init(self, *args, **kwargs) | |
return __init__ | |