|
""" |
|
v1 |
|
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "E:\codes\py39\RVC-beta\output" "E:\codes\py39\test-20230416b\weights\mi-test.pth" 0.66 cuda:0 True 3 0 1 0.33 |
|
v2 |
|
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\test-20230416b\logs\mi-test-v2\aadded_IVF677_Flat_nprobe_1_v2.index" harvest "E:\codes\py39\RVC-beta\output_v2" "E:\codes\py39\test-20230416b\weights\mi-test-v2.pth" 0.66 cuda:0 True 3 0 1 0.33 |
|
""" |
|
import os, sys |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
import sys |
|
import torch |
|
import tqdm as tq |
|
from multiprocessing import cpu_count |
|
|
|
|
|
class Config: |
|
def __init__(self, device, is_half): |
|
self.device = device |
|
self.is_half = is_half |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
print("16系/10系显卡和P40强制单精度") |
|
self.is_half = False |
|
for config_file in ["32k.json", "40k.json", "48k.json"]: |
|
with open(f"assets/configs/{config_file}", "r") as f: |
|
strr = f.read().replace("true", "false") |
|
with open(f"assets/configs/{config_file}", "w") as f: |
|
f.write(strr) |
|
with open("infer/modules/train/preprocess.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("infer/modules/train/preprocess.py", "w") as f: |
|
f.write(strr) |
|
else: |
|
self.gpu_name = None |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
if self.gpu_mem <= 4: |
|
with open("infer/modules/train/preprocess.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("infer/modules/train/preprocess.py", "w") as f: |
|
f.write(strr) |
|
elif torch.backends.mps.is_available(): |
|
print("没有发现支持的N卡, 使用MPS进行推理") |
|
self.device = "mps" |
|
else: |
|
print("没有发现支持的N卡, 使用CPU进行推理") |
|
self.device = "cpu" |
|
self.is_half = True |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
|
|
f0up_key = sys.argv[1] |
|
input_path = sys.argv[2] |
|
index_path = sys.argv[3] |
|
f0method = sys.argv[4] |
|
opt_path = sys.argv[5] |
|
model_path = sys.argv[6] |
|
index_rate = float(sys.argv[7]) |
|
device = sys.argv[8] |
|
is_half = sys.argv[9].lower() != "false" |
|
filter_radius = int(sys.argv[10]) |
|
resample_sr = int(sys.argv[11]) |
|
rms_mix_rate = float(sys.argv[12]) |
|
protect = float(sys.argv[13]) |
|
print(sys.argv) |
|
config = Config(device, is_half) |
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
from lib.infer.modules.vc.modules import VC |
|
from lib.infer.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid, |
|
SynthesizerTrnMs256NSFsid_nono, |
|
SynthesizerTrnMs768NSFsid, |
|
SynthesizerTrnMs768NSFsid_nono, |
|
) |
|
from lib.infer.infer_libs.audio import load_audio |
|
from fairseq import checkpoint_utils |
|
from scipy.io import wavfile |
|
|
|
hubert_model = None |
|
|
|
|
|
def load_hubert(): |
|
global hubert_model |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( |
|
["hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(device) |
|
if is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
|
|
|
|
def vc_single(sid, input_audio, f0_up_key, f0_file, f0_method, file_index, index_rate): |
|
global tgt_sr, net_g, vc, hubert_model, version |
|
if input_audio is None: |
|
return "You need to upload an audio", None |
|
f0_up_key = int(f0_up_key) |
|
audio = load_audio(input_audio, 16000) |
|
times = [0, 0, 0] |
|
if hubert_model == None: |
|
load_hubert() |
|
if_f0 = cpt.get("f0", 1) |
|
|
|
audio_opt = vc.pipeline( |
|
hubert_model, |
|
net_g, |
|
sid, |
|
audio, |
|
input_audio, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
protect, |
|
f0_file=f0_file, |
|
) |
|
print(times) |
|
return audio_opt |
|
|
|
|
|
def get_vc(model_path): |
|
global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version |
|
print("loading pth %s" % model_path) |
|
cpt = torch.load(model_path, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(device) |
|
if is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
|
|
|
|
|
|
get_vc(model_path) |
|
audios = os.listdir(input_path) |
|
for file in tq.tqdm(audios): |
|
if file.endswith(".wav"): |
|
file_path = input_path + "/" + file |
|
wav_opt = vc_single( |
|
0, file_path, f0up_key, None, f0method, index_path, index_rate |
|
) |
|
out_path = opt_path + "/" + file |
|
wavfile.write(out_path, tgt_sr, wav_opt) |
|
|