|
import streamlit as st |
|
import wget, os, io, ast |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from genQC.pipeline.diffusion_pipeline import DiffusionPipeline |
|
from genQC.inference.infer_srv import generate_srv_tensors, convert_tensors_to_srvs |
|
from genQC.util import infer_torch_device |
|
|
|
|
|
|
|
|
|
save_destination = "saves/" |
|
|
|
url_config = "https://github.com/FlorianFuerrutter/genQC/blob/044f7da6ebe907bd796d3db293024db223cc1852/saves/qc_unet_config_SRV_3to8_qubit/config.yaml" |
|
url_weights = "https://github.com/FlorianFuerrutter/genQC/blob/044f7da6ebe907bd796d3db293024db223cc1852/saves/qc_unet_config_SRV_3to8_qubit/model.pt" |
|
|
|
def download(url, dst_dir): |
|
if not os.path.exists(dst_dir): os.mkdir(dst_dir) |
|
filename = os.path.join(dst_dir, os.path.basename(url)) |
|
if not os.path.exists(filename): filename = wget.download(url + "?raw=true", out=filename) |
|
return filename |
|
|
|
config_file = download(url_config, save_destination) |
|
weigths_file = download(url_weights, save_destination) |
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
def load_pipeline(): |
|
pipeline = DiffusionPipeline.from_config_file(save_destination, infer_torch_device()) |
|
pipeline.scheduler.set_timesteps(20) |
|
return pipeline |
|
|
|
pipeline = load_pipeline() |
|
|
|
|
|
is_gpu_busy = False |
|
def get_qcs(srv, num_of_qubits, max_gates, g): |
|
global is_gpu_busy |
|
|
|
out_tensor = generate_srv_tensors(pipeline, f"Generate SRV: {srv}", samples=6, system_size=num_of_qubits, num_of_qubits=num_of_qubits, max_gates=max_gates, g=g) |
|
qc_list, _, svr_list = convert_tensors_to_srvs(out_tensor, pipeline.gate_pool) |
|
|
|
fig, axs = plt.subplots(3, 2, figsize=(7,10), constrained_layout=True, dpi=120) |
|
for qc,is_svr,ax in zip(qc_list, svr_list, axs.flatten()): |
|
qc.draw("mpl", plot_barriers=False, ax=ax) |
|
ax.set_title(f"{'Correct' if is_svr==srv else 'NOT correct'}, is SRV = {is_svr}") |
|
|
|
|
|
|
|
|
|
|
|
return fig |
|
|
|
|
|
|
|
|
|
st.title("genQC · Generative Quantum Circuits") |
|
st.write(""" |
|
Generating quantum circuits with diffusion models. Official demo of [[paper-arxiv]](https://arxiv.org/abs/2311.02041) [[code-repo]](https://github.com/FlorianFuerrutter/genQC). |
|
""") |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
srv = col1.text_input('SRV', "[1,1,1,2,2]") |
|
num_of_qubits = col1.radio('Number of qubits (should match SRV)', [3,4,5,6,7,8], index=2) |
|
max_gates = col1.select_slider('Max gates', options=[4,8,12,16,20,24,28], value=16) |
|
g = col1.slider('Guidance scale', min_value=0.0, max_value=15.0, value=7.5) |
|
|
|
if col1.button('Generate circuits'): |
|
fig = get_qcs(ast.literal_eval(srv), num_of_qubits, max_gates, g) |
|
|
|
col2.pyplot(fig) |