Spaces:
Sleeping
Sleeping
HERIUN
commited on
Commit
β’
6a07cb2
1
Parent(s):
85dbfc9
add files
Browse files- DocScanner-L.pth +3 -0
- config.py +28 -0
- data_utils/.gitignore +3 -0
- data_utils/__init__.py +233 -0
- data_utils/alarm.py +68 -0
- data_utils/awss3.py +50 -0
- data_utils/box_utils.py +483 -0
- data_utils/color_utils.py +490 -0
- data_utils/conf.py +170 -0
- data_utils/image_utils.py +1364 -0
- rect_main.py +173 -0
- seg.pth +3 -0
DocScanner-L.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d907965aa5d8e99ea8d0891fb66d13bc4f23838547bac6f568d01d480ff8c8a
|
3 |
+
size 29328510
|
config.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
class Config:
|
5 |
+
def __init__(self):
|
6 |
+
self.current_dir = os.path.dirname(os.path.abspath(__file__))
|
7 |
+
self.seg_model_path = os.path.join(self.current_dir, "pretrained", "seg.pth")
|
8 |
+
self.rec_model_path = os.path.join(
|
9 |
+
self.current_dir, "pretrained", "DocScanner-L.pth"
|
10 |
+
)
|
11 |
+
self.geotr_model_path = os.path.join(self.current_dir, "pretrained", "model.pt")
|
12 |
+
self.save_path = os.path.join(self.current_dir, "output")
|
13 |
+
|
14 |
+
@property
|
15 |
+
def get_seg_model_path(self):
|
16 |
+
return self.seg_model_path
|
17 |
+
|
18 |
+
@property
|
19 |
+
def get_rec_model_path(self):
|
20 |
+
return self.rec_model_path
|
21 |
+
|
22 |
+
@property
|
23 |
+
def get_geotr_model_path(self):
|
24 |
+
return self.geotr_model_path
|
25 |
+
|
26 |
+
@property
|
27 |
+
def get_save_path(self):
|
28 |
+
return self.save_path
|
data_utils/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
sRGB Color Space Profile.icm
|
3 |
+
USWebCoatedSWOP.icc
|
data_utils/__init__.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import time
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
from pytz import timezone
|
7 |
+
import re
|
8 |
+
import json
|
9 |
+
import config
|
10 |
+
from data_utils.image_utils import (
|
11 |
+
load_image,
|
12 |
+
resize_coordinates_and_image_to_fit_to_maximum_pixel_counts,
|
13 |
+
)
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import os
|
17 |
+
|
18 |
+
from functools import wraps
|
19 |
+
import threading
|
20 |
+
|
21 |
+
lock = threading.Lock()
|
22 |
+
|
23 |
+
|
24 |
+
def check_gpu():
|
25 |
+
if torch.cuda.is_available():
|
26 |
+
current_device = torch.cuda.current_device()
|
27 |
+
device_name = torch.cuda.get_device_name(current_device)
|
28 |
+
print(f"Using GPU Device: {current_device} - {device_name}")
|
29 |
+
else:
|
30 |
+
print("CUDA is not available.")
|
31 |
+
|
32 |
+
|
33 |
+
def record_and_save_gpu_memory_usage(func): # Add func parameter
|
34 |
+
@wraps(func)
|
35 |
+
def wrapper(*args, **kwargs):
|
36 |
+
torch.cuda.memory._record_memory_history(enabled=True)
|
37 |
+
|
38 |
+
result = func(*args, **kwargs)
|
39 |
+
|
40 |
+
torch.cuda.memory._record_memory_history(enabled=False)
|
41 |
+
|
42 |
+
torch.cuda.memory._save_segment_usage(filename="snapshot/segment_usage.svg")
|
43 |
+
torch.cuda.memory._save_memory_usage(filename="snapshot/memory_usage.svg")
|
44 |
+
|
45 |
+
return result # Ensure the result is returned
|
46 |
+
|
47 |
+
return wrapper
|
48 |
+
|
49 |
+
|
50 |
+
def measure_gpu_time_and_memory(func):
|
51 |
+
@wraps(func)
|
52 |
+
def wrapper(*args, **kwargs):
|
53 |
+
cuda = kwargs.get("cuda", True) # Default to True if 'cuda' is not provided
|
54 |
+
|
55 |
+
start_memory = (
|
56 |
+
torch.cuda.memory_reserved() if cuda else 0
|
57 |
+
) # Record initial memory
|
58 |
+
result = func(*args, **kwargs)
|
59 |
+
end_memory = torch.cuda.memory_reserved() if cuda else 0 # Record final memory
|
60 |
+
|
61 |
+
if cuda:
|
62 |
+
print(
|
63 |
+
f"{func.__name__} Initial CUDA memory reserved: {start_memory / (1024 ** 3):.2f} GB"
|
64 |
+
)
|
65 |
+
print(
|
66 |
+
f"{func.__name__} Final CUDA memory reserved: {end_memory / (1024 ** 3):.2f} GB"
|
67 |
+
)
|
68 |
+
print(
|
69 |
+
f"{func.__name__} CUDA memory change: {(end_memory - start_memory) / (1024 ** 3):.2f} GB"
|
70 |
+
)
|
71 |
+
|
72 |
+
return result
|
73 |
+
|
74 |
+
return wrapper
|
75 |
+
|
76 |
+
|
77 |
+
def timeit(func):
|
78 |
+
@wraps(func)
|
79 |
+
def timeit_wrapper(*args, **kwargs):
|
80 |
+
start_time = time.perf_counter()
|
81 |
+
result = func(*args, **kwargs)
|
82 |
+
end_time = time.perf_counter()
|
83 |
+
total_time = end_time - start_time
|
84 |
+
if kwargs.get("debug", False):
|
85 |
+
print(f"{func.__name__} : {total_time:.4f} sec..")
|
86 |
+
# print(f'Function {func.__name__} {args} {kwargs} Took {total_time:.4f} seconds')
|
87 |
+
return result
|
88 |
+
|
89 |
+
return timeit_wrapper
|
90 |
+
|
91 |
+
|
92 |
+
def async_timeit(func):
|
93 |
+
@wraps(func)
|
94 |
+
async def timeit_wrapper(*args, **kwargs):
|
95 |
+
start_time = time.perf_counter()
|
96 |
+
result = await func(*args, **kwargs)
|
97 |
+
end_time = time.perf_counter()
|
98 |
+
total_time = end_time - start_time
|
99 |
+
if kwargs.get("debug", False):
|
100 |
+
print(f"{func.__name__} : {total_time:.4f} sec..")
|
101 |
+
# print(f'Function {func.__name__} {args} {kwargs} Took {total_time:.4f} seconds')
|
102 |
+
return result
|
103 |
+
|
104 |
+
return timeit_wrapper
|
105 |
+
|
106 |
+
|
107 |
+
def thread_func(func):
|
108 |
+
@wraps(func)
|
109 |
+
def thread_func_wrapper(*args, **kwargs):
|
110 |
+
lock.acquire()
|
111 |
+
result = func(*args, **kwargs)
|
112 |
+
lock.release()
|
113 |
+
torch.cuda.empty_cache()
|
114 |
+
return result
|
115 |
+
|
116 |
+
return thread_func_wrapper
|
117 |
+
|
118 |
+
|
119 |
+
def get_arguments():
|
120 |
+
parser = argparse.ArgumentParser(description="text_remover")
|
121 |
+
|
122 |
+
parser.add_argument("--image")
|
123 |
+
parser.add_argument("--dir")
|
124 |
+
parser.add_argument("--json")
|
125 |
+
parser.add_argument("--refine", action="store_true", default=False)
|
126 |
+
parser.add_argument("--preserve_resolution", action="store_true", default=False)
|
127 |
+
parser.add_argument("--pixel_thresh", type=int)
|
128 |
+
# Evaluate text stroke mask
|
129 |
+
parser.add_argument("--prepare_kaist", action="store_true", default=False)
|
130 |
+
parser.add_argument("--kaist_all_zip")
|
131 |
+
parser.add_argument("--data_dir")
|
132 |
+
|
133 |
+
args = parser.parse_args()
|
134 |
+
return args
|
135 |
+
|
136 |
+
|
137 |
+
def get_elapsed_time(start_time):
|
138 |
+
return timedelta(seconds=round(time.time() - start_time))
|
139 |
+
|
140 |
+
|
141 |
+
def get_current_time():
|
142 |
+
return str(datetime.now(timezone("Asia/Seoul"))).replace(" ", "-").rsplit(".", 1)[0]
|
143 |
+
|
144 |
+
|
145 |
+
def parse_csv_file(path_csv, resize=False):
|
146 |
+
df = pd.read_csv(path_csv)
|
147 |
+
|
148 |
+
ls_rows = list()
|
149 |
+
for coor, content in df[["coordinates", "content"]].values:
|
150 |
+
coor = re.sub(pattern=r"\(|\)", repl="", string=coor)
|
151 |
+
coor = coor.split(",")
|
152 |
+
|
153 |
+
rect = list(map(int, coor))
|
154 |
+
ls_rows.append((rect[2], rect[3], rect[0], rect[1], content))
|
155 |
+
bboxes = pd.DataFrame(
|
156 |
+
ls_rows, columns=["xmin", "ymin", "xmax", "ymax", "transcript"]
|
157 |
+
)
|
158 |
+
|
159 |
+
bboxes["area"] = bboxes.apply(
|
160 |
+
lambda x: (x["xmax"] - x["xmin"]) * (x["ymax"] - x["ymin"]), axis=1
|
161 |
+
)
|
162 |
+
bboxes.sort_values(["area"], inplace=True)
|
163 |
+
bboxes.drop(["area"], axis=1, inplace=True)
|
164 |
+
|
165 |
+
img_url = df["image_url"].values[0]
|
166 |
+
img = load_image(img_url)
|
167 |
+
|
168 |
+
if resize:
|
169 |
+
bboxes, img = resize_coordinates_and_image_to_fit_to_maximum_pixel_counts(
|
170 |
+
ha_bboxs=bboxes, img=img
|
171 |
+
)
|
172 |
+
return bboxes, img, img_url
|
173 |
+
|
174 |
+
|
175 |
+
def parse_json_file(json_path):
|
176 |
+
with open(json_path, mode="r") as f:
|
177 |
+
req = json.load(f)
|
178 |
+
|
179 |
+
img_url = req["data"]["data"]["req"]["image_url"]
|
180 |
+
img = load_image(img_url)
|
181 |
+
|
182 |
+
coors = req["data"]["data"]["req"]["coordinates"]
|
183 |
+
bboxes = pd.DataFrame(coors, columns=["xmin", "ymin", "xmax", "ymax"])
|
184 |
+
return bboxes, img, img_url
|
185 |
+
|
186 |
+
|
187 |
+
def parse_transcription_df(csv_path, index=0):
|
188 |
+
df = pd.read_csv(csv_path)
|
189 |
+
ls_rows = list()
|
190 |
+
for idx, (img_url, df_groupby) in enumerate(df.groupby("image_url")):
|
191 |
+
if idx != index:
|
192 |
+
continue
|
193 |
+
img = load_image(img_url)
|
194 |
+
|
195 |
+
# for img_url, coor, ori_content, tr_content in df_groupby.values:
|
196 |
+
for item_org_id, img_url, coor, ori_content, tr_content in df_groupby.values:
|
197 |
+
coor = re.sub(pattern=r"\(|\)|\.0", repl="", string=coor)
|
198 |
+
coor = coor.split(",")
|
199 |
+
rect = list(map(int, coor))
|
200 |
+
# ls_rows.append((rect[2], rect[3], rect[0], rect[1], ori_content, tr_content))
|
201 |
+
ls_rows.append(
|
202 |
+
(
|
203 |
+
item_org_id,
|
204 |
+
rect[2],
|
205 |
+
rect[3],
|
206 |
+
rect[0],
|
207 |
+
rect[1],
|
208 |
+
ori_content,
|
209 |
+
tr_content,
|
210 |
+
)
|
211 |
+
)
|
212 |
+
bboxes = pd.DataFrame(
|
213 |
+
# ls_rows, columns=["xmin", "ymin", "xmax", "ymax", "ori_content", "tr_content"]
|
214 |
+
ls_rows,
|
215 |
+
columns=[
|
216 |
+
"item_org_id",
|
217 |
+
"xmin",
|
218 |
+
"ymin",
|
219 |
+
"xmax",
|
220 |
+
"ymax",
|
221 |
+
"ori_content",
|
222 |
+
"tr_content",
|
223 |
+
],
|
224 |
+
)
|
225 |
+
return bboxes, img, img_url
|
226 |
+
|
227 |
+
|
228 |
+
if __name__ == "__main__":
|
229 |
+
pass
|
230 |
+
# font = ImageFont.truetype(
|
231 |
+
# font="/Users/jongbeomkim/Desktop/workspace/image_processing_server/fonts/NotoSansThai-ExtraBold.ttf",
|
232 |
+
# size=round(30),
|
233 |
+
# )
|
data_utils/alarm.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from slack_sdk import WebClient
|
3 |
+
|
4 |
+
|
5 |
+
class Alarm:
|
6 |
+
def __init__(self, slack):
|
7 |
+
self.url = slack.url
|
8 |
+
self.username = slack.username
|
9 |
+
self.icon_emoji = slack.icon_emoji
|
10 |
+
self.channel_id = slack.channel_id
|
11 |
+
self.bot_token = slack.bot_token
|
12 |
+
self.client = WebClient(self.bot_token)
|
13 |
+
|
14 |
+
def _get_color(self, level) -> str:
|
15 |
+
if level == "ignore":
|
16 |
+
color = "#36A64F" # Green
|
17 |
+
elif level == "warning":
|
18 |
+
color = "#F08080" # Red
|
19 |
+
return color
|
20 |
+
|
21 |
+
def send(self, level, text):
|
22 |
+
color = self._get_color(level)
|
23 |
+
message = {
|
24 |
+
"attachments": [{"text": text, "color": color}],
|
25 |
+
"username": self.username,
|
26 |
+
"icon_emoji": self.icon_emoji,
|
27 |
+
}
|
28 |
+
|
29 |
+
requests.post(self.url, json=message)
|
30 |
+
|
31 |
+
def send_sdk(self, level, text):
|
32 |
+
color = self._get_color(level)
|
33 |
+
|
34 |
+
re = self.client.chat_postMessage(
|
35 |
+
channel=self.channel_id,
|
36 |
+
attachments=[{"fallback": "fallback", "text": text, "color": color}],
|
37 |
+
icon_emoji=self.icon_emoji,
|
38 |
+
user_name=self.username,
|
39 |
+
)
|
40 |
+
|
41 |
+
return re.data["ts"]
|
42 |
+
|
43 |
+
def post_reply_to_thread(self, level, thread_ts, text):
|
44 |
+
color = self._get_color(level)
|
45 |
+
|
46 |
+
self.client.chat_postMessage(
|
47 |
+
channel=self.channel_id,
|
48 |
+
attachments=[{"fallback": "fallback", "text": text, "color": color}],
|
49 |
+
icon_emoji=self.icon_emoji,
|
50 |
+
thread_ts=thread_ts,
|
51 |
+
user_name=self.username,
|
52 |
+
)
|
53 |
+
|
54 |
+
def post_reaction(self, thread_ts, emoji_name):
|
55 |
+
# emoji_name ex. "x", "μλ£"
|
56 |
+
self.client.reactions_add(
|
57 |
+
channel=self.channel_id, name=emoji_name, timestamp=thread_ts
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
class AlertLevel:
|
62 |
+
IGNORE = "ignore"
|
63 |
+
WARNING = "warning"
|
64 |
+
MAJOR = "major"
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def get_levels(self):
|
68 |
+
return [self.IGNORE, self.WARNING, self.MAJOR]
|
data_utils/awss3.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import boto3
|
2 |
+
import cv2
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
AWS_ACCESS_KEY_ID = os.environ.get("AWS_ACCESS_KEY_ID")
|
9 |
+
AWS_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY")
|
10 |
+
|
11 |
+
|
12 |
+
class AWSS3:
|
13 |
+
def load_image(self, bucket, path, local_path):
|
14 |
+
file = self.__s3.get_object(Bucket=bucket, Key=path)
|
15 |
+
img_content = file["Body"].read()
|
16 |
+
|
17 |
+
with open(local_path, "wb") as f:
|
18 |
+
f.write(img_content)
|
19 |
+
|
20 |
+
img = cv2.imread(local_path, cv2.IMREAD_COLOR)
|
21 |
+
img = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2RGB)
|
22 |
+
|
23 |
+
return img
|
24 |
+
|
25 |
+
def save_image(self, bucket, path, local_path) -> bool:
|
26 |
+
with open(local_path, "rb") as f:
|
27 |
+
image_content = f.read()
|
28 |
+
|
29 |
+
if image_content:
|
30 |
+
content_type = "image/" + local_path.rsplit(".", 1)[-1].lower().replace(
|
31 |
+
"jpg", "jpeg"
|
32 |
+
)
|
33 |
+
self.__s3.put_object(
|
34 |
+
Bucket=bucket,
|
35 |
+
Key=path,
|
36 |
+
Body=image_content,
|
37 |
+
ACL="public-read",
|
38 |
+
ContentDisposition="inline",
|
39 |
+
ContentType=content_type,
|
40 |
+
)
|
41 |
+
return True
|
42 |
+
else:
|
43 |
+
return False
|
44 |
+
|
45 |
+
def __init__(self):
|
46 |
+
self.__s3 = boto3.client(
|
47 |
+
"s3",
|
48 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
49 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
50 |
+
)
|
data_utils/box_utils.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import pkg_resources as pkg
|
5 |
+
import torch
|
6 |
+
import math
|
7 |
+
from typing import Tuple
|
8 |
+
from data_utils.image_utils import _get_width_and_height
|
9 |
+
|
10 |
+
|
11 |
+
def points_to_xyxy(coords: np.ndarray) -> list:
|
12 |
+
x_coords = [coord[0] for coord in coords]
|
13 |
+
y_coords = [coord[1] for coord in coords]
|
14 |
+
x1 = min(x_coords)
|
15 |
+
y1 = min(y_coords)
|
16 |
+
x2 = max(x_coords)
|
17 |
+
y2 = max(y_coords)
|
18 |
+
return [x1, y1, x2, y2]
|
19 |
+
|
20 |
+
|
21 |
+
def xyxy2xywh(x):
|
22 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
23 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
24 |
+
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
|
25 |
+
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
|
26 |
+
y[..., 2] = x[..., 2] - x[..., 0] # width
|
27 |
+
y[..., 3] = x[..., 3] - x[..., 1] # height
|
28 |
+
return y
|
29 |
+
|
30 |
+
|
31 |
+
def xywh2xyxy(x):
|
32 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
33 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
34 |
+
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
|
35 |
+
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
|
36 |
+
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
|
37 |
+
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
|
38 |
+
return y
|
39 |
+
|
40 |
+
|
41 |
+
def is_abox_in_bbox(abox_coords, bbox_coords):
|
42 |
+
# aboxκ° bboxμμ μλμ§ νμΈνλ ν¨μ. μ’ννμ. (x1,y1,x2,y2)
|
43 |
+
if (
|
44 |
+
bbox_coords[0] <= abox_coords[0]
|
45 |
+
and bbox_coords[1] <= abox_coords[1]
|
46 |
+
and abox_coords[2] <= bbox_coords[2]
|
47 |
+
and abox_coords[3] <= bbox_coords[3]
|
48 |
+
):
|
49 |
+
return True
|
50 |
+
else:
|
51 |
+
return False
|
52 |
+
|
53 |
+
|
54 |
+
def calculate_aspect_ratio(box):
|
55 |
+
width = box[2] - box[0]
|
56 |
+
height = box[3] - box[1]
|
57 |
+
aspect_ratio = width / (height + 1e-8)
|
58 |
+
return aspect_ratio
|
59 |
+
|
60 |
+
|
61 |
+
def get_box_shape(box, threshold=0.1):
|
62 |
+
"""
|
63 |
+
Check if a box is close to a square.
|
64 |
+
- threshold (float): The threshold for considering the box as close to a square.
|
65 |
+
Default is 0.1.
|
66 |
+
Returns:
|
67 |
+
- str: "square" or "horizontal" or "vertical"
|
68 |
+
"""
|
69 |
+
aspect_ratio = calculate_aspect_ratio(box)
|
70 |
+
if abs(1 - aspect_ratio) < threshold:
|
71 |
+
return "square"
|
72 |
+
elif aspect_ratio > 1:
|
73 |
+
return "horizontal"
|
74 |
+
elif aspect_ratio < 1:
|
75 |
+
return "vertical"
|
76 |
+
|
77 |
+
|
78 |
+
def calculate_aspect_ratio_loss(predicted_box, gt_box):
|
79 |
+
"""predicted_boxμ gt_boxκ°μ κ°λ‘μΈλ‘ λΉμ¨μ λν μ°¨μ΄λλ₯Ό λ°ν range:0~1. ν΄μλ‘ μ°¨μ΄κ° ν¬λ€λ λ»."""
|
80 |
+
gt_aspect_ratio = calculate_aspect_ratio(gt_box)
|
81 |
+
pred_aspect_ratio = calculate_aspect_ratio(predicted_box)
|
82 |
+
|
83 |
+
ratio_difference = abs(gt_aspect_ratio - pred_aspect_ratio)
|
84 |
+
|
85 |
+
loss = 2 * math.atan(ratio_difference) / math.pi
|
86 |
+
|
87 |
+
return loss
|
88 |
+
|
89 |
+
|
90 |
+
def clip_boxes(boxes, shape):
|
91 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
92 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
93 |
+
boxes[..., 0].clamp_(0, shape[1]) # x1
|
94 |
+
boxes[..., 1].clamp_(0, shape[0]) # y1
|
95 |
+
boxes[..., 2].clamp_(0, shape[1]) # x2
|
96 |
+
boxes[..., 3].clamp_(0, shape[0]) # y2
|
97 |
+
else: # np.array (faster grouped)
|
98 |
+
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
|
99 |
+
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|
100 |
+
|
101 |
+
|
102 |
+
def is_box_overlap(box1, box2):
|
103 |
+
# Box overlap checking logic
|
104 |
+
if box1[0] > box2[2] or box1[2] < box2[0] or box1[1] > box2[3] or box1[3] < box2[1]:
|
105 |
+
return False
|
106 |
+
else:
|
107 |
+
return True
|
108 |
+
|
109 |
+
|
110 |
+
def intersection_area(box1, box2):
|
111 |
+
"""
|
112 |
+
Calculate the intersection area between two bounding boxes.
|
113 |
+
|
114 |
+
Parameters:
|
115 |
+
- box1, box2: Tuple or list representing the bounding box in the format (x1, y1, x2, y2).
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
- area: Intersection area between the two boxes.
|
119 |
+
"""
|
120 |
+
x1_box1, y1_box1, x2_box1, y2_box1 = box1
|
121 |
+
x1_box2, y1_box2, x2_box2, y2_box2 = box2
|
122 |
+
|
123 |
+
# Calculate intersection coordinates
|
124 |
+
x_intersection = max(x1_box1, x1_box2)
|
125 |
+
y_intersection = max(y1_box1, y1_box2)
|
126 |
+
x_intersection_end = min(x2_box1, x2_box2)
|
127 |
+
y_intersection_end = min(y2_box1, y2_box2)
|
128 |
+
|
129 |
+
# Calculate intersection area
|
130 |
+
width_intersection = max(0, x_intersection_end - x_intersection)
|
131 |
+
height_intersection = max(0, y_intersection_end - y_intersection)
|
132 |
+
area = width_intersection * height_intersection
|
133 |
+
|
134 |
+
return area
|
135 |
+
|
136 |
+
|
137 |
+
def bbox_iou(box1, box2, GIoU=False, DIoU=False, CIoU=False, CIoU2=False, eps=1e-7):
|
138 |
+
"""
|
139 |
+
Caclulate IoUs(GIoU,DIoU,CIoU,CIoU2)
|
140 |
+
|
141 |
+
Parameters:
|
142 |
+
- box1, box2: Tuple or list representing the bounding box in the format (x1, y1, x2, y2).
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
- IoU or GIoU or DIoU or CIoU or CIoU2
|
146 |
+
"""
|
147 |
+
# Returns Intersection over Union (IoU)
|
148 |
+
|
149 |
+
# Get the coordinates of bounding boxes
|
150 |
+
# x1, y1, x2, y2 = box1
|
151 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
152 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2
|
153 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
154 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
155 |
+
|
156 |
+
# Intersection area
|
157 |
+
inter = intersection_area(box1, box2)
|
158 |
+
|
159 |
+
# Union Area
|
160 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
161 |
+
|
162 |
+
iou = inter / union
|
163 |
+
|
164 |
+
if CIoU or DIoU or GIoU or CIoU2:
|
165 |
+
cw = max(b1_x2, b2_x2) - min(
|
166 |
+
b1_x1, b2_x1
|
167 |
+
) # convex (smallest enclosing box) width
|
168 |
+
ch = max(b1_y2, b2_y2) - min(b1_y1, b2_y1) # convex height
|
169 |
+
c_area = cw * ch + eps # convex area
|
170 |
+
giou_penalty = (c_area - union) / c_area
|
171 |
+
if GIoU: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
172 |
+
return round(iou - giou_penalty, 4) # GIoU
|
173 |
+
elif (
|
174 |
+
DIoU or CIoU
|
175 |
+
): # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
176 |
+
rho2 = (
|
177 |
+
(b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2
|
178 |
+
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2
|
179 |
+
) / 4 # center dist ** 2
|
180 |
+
c2 = cw**2 + ch**2 + eps # convex diagonal squared
|
181 |
+
diou_penalty = rho2 / c2
|
182 |
+
if DIoU:
|
183 |
+
return round(iou - diou_penalty, 4) # DIoU
|
184 |
+
if CIoU or CIoU2:
|
185 |
+
v = (4 / math.pi**2) * (
|
186 |
+
(np.arctan((w2 / h2)) - np.arctan(w1 / h1)) ** 2
|
187 |
+
)
|
188 |
+
alpha = v / (v - iou + (1 + eps))
|
189 |
+
ciou_penalty = diou_penalty + alpha * v
|
190 |
+
if CIoU2:
|
191 |
+
ciou2_penalty = giou_penalty + diou_penalty + alpha * v
|
192 |
+
return round(iou - ciou2_penalty) # CIoU2
|
193 |
+
return round(iou - ciou_penalty, 4) # CIoU
|
194 |
+
|
195 |
+
return round(iou, 4) # IoU
|
196 |
+
|
197 |
+
|
198 |
+
def rotate_around_point(x, y, pivot_x, pivot_y, degrees) -> Tuple[int, int]:
|
199 |
+
"""μ£Όμ΄μ§ μ’ν (x,y)λ₯Ό μΆ μ’ν(pivot_x,pivot_y_λ₯Ό κΈ°μ€μΌλ‘ λ°μκ³ λ°©ν₯μΌλ‘ νμ . return new_x,new_y"""
|
200 |
+
|
201 |
+
# κ°λλ₯Ό λΌλμμΌλ‘ λ³ν
|
202 |
+
angle_radians = np.radians(degrees)
|
203 |
+
|
204 |
+
# νμ λ³ν μ μ©
|
205 |
+
x_new = (
|
206 |
+
pivot_x
|
207 |
+
+ np.cos(angle_radians) * (x - pivot_x)
|
208 |
+
- np.sin(angle_radians) * (y - pivot_y)
|
209 |
+
)
|
210 |
+
y_new = (
|
211 |
+
pivot_y
|
212 |
+
+ np.sin(angle_radians) * (x - pivot_x)
|
213 |
+
+ np.cos(angle_radians) * (y - pivot_y)
|
214 |
+
)
|
215 |
+
|
216 |
+
return int(x_new), int(y_new)
|
217 |
+
|
218 |
+
|
219 |
+
def rotate_box_coordinates_on_pivot(x1, y1, x2, y2, degrees, pivot_x, pivot_y):
|
220 |
+
"""μ£Όμ΄μ§ box μ’ν(x1,y1,x2,y2)λ₯Ό μ£Όμ΄μ§ μΆ μ’ν(pivot_x,pivot_y)μ λν΄ μκ³ λ°©ν₯μΌλ‘ νμ """
|
221 |
+
radians = np.radians(degrees)
|
222 |
+
rotation_matrix = np.array(
|
223 |
+
[[np.cos(radians), -np.sin(radians)], [np.sin(radians), np.cos(radians)]]
|
224 |
+
)
|
225 |
+
|
226 |
+
# μμ μ’νλ₯Ό μ€μ¬μ κΈ°μ€μΌλ‘ νμ
|
227 |
+
box_coordinates = np.array(
|
228 |
+
[
|
229 |
+
[x1 - pivot_x, y1 - pivot_y],
|
230 |
+
[x2 - pivot_x, y1 - pivot_y],
|
231 |
+
[x2 - pivot_x, y2 - pivot_y],
|
232 |
+
[x1 - pivot_x, y2 - pivot_y],
|
233 |
+
]
|
234 |
+
)
|
235 |
+
|
236 |
+
rotated_box_coordinates = np.dot(box_coordinates, rotation_matrix.T)
|
237 |
+
|
238 |
+
# νμ ν μ’νμ μ€μ¬ μ’νλ₯Ό λν΄ μλ μ’νλ‘ λ³ν
|
239 |
+
rotated_box_coordinates += np.array([pivot_y, pivot_x])
|
240 |
+
|
241 |
+
# λ³νλ μ’νλ₯Ό μλ‘μ΄ μμ μ’νλ‘ λ°ν
|
242 |
+
new_x1, new_y1 = rotated_box_coordinates.min(axis=0)
|
243 |
+
new_x2, new_y2 = rotated_box_coordinates.max(axis=0)
|
244 |
+
|
245 |
+
return int(new_x1), int(new_y1), int(new_x2), int(new_y2)
|
246 |
+
|
247 |
+
|
248 |
+
def bbox_iou_torch(
|
249 |
+
box1, box2, xywh=False, GIoU=False, DIoU=False, CIoU=False, eps=1e-7
|
250 |
+
):
|
251 |
+
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
252 |
+
|
253 |
+
# Get the coordinates of bounding boxes
|
254 |
+
if xywh: # transform from xywh to xyxy
|
255 |
+
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
256 |
+
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
257 |
+
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
258 |
+
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
259 |
+
else: # x1, y1, x2, y2 = box1
|
260 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
261 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
262 |
+
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
|
263 |
+
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
|
264 |
+
|
265 |
+
# Intersection area
|
266 |
+
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * (
|
267 |
+
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
|
268 |
+
).clamp(0)
|
269 |
+
|
270 |
+
# Union Area
|
271 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
272 |
+
|
273 |
+
# IoU
|
274 |
+
iou = inter / union
|
275 |
+
if CIoU or DIoU or GIoU:
|
276 |
+
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(
|
277 |
+
b2_x1
|
278 |
+
) # convex (smallest enclosing box) width
|
279 |
+
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
|
280 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
281 |
+
c2 = cw**2 + ch**2 + eps # convex diagonal squared
|
282 |
+
rho2 = (
|
283 |
+
(b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2
|
284 |
+
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2
|
285 |
+
) / 4 # center dist ** 2
|
286 |
+
if (
|
287 |
+
CIoU
|
288 |
+
): # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
289 |
+
v = (4 / math.pi**2) * (
|
290 |
+
torch.atan(w2 / h2) - torch.atan(w1 / h1)
|
291 |
+
).pow(2)
|
292 |
+
with torch.no_grad():
|
293 |
+
alpha = v / (v - iou + (1 + eps))
|
294 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
295 |
+
return iou - rho2 / c2 # DIoU
|
296 |
+
c_area = cw * ch + eps # convex area
|
297 |
+
return (
|
298 |
+
iou - (c_area - union) / c_area
|
299 |
+
) # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
300 |
+
return iou # IoU
|
301 |
+
|
302 |
+
|
303 |
+
def generate_random_box(width_range, height_range):
|
304 |
+
"""
|
305 |
+
Generate random bounding box coordinates (x1, y1, x2, y2) with random width and height.
|
306 |
+
|
307 |
+
Parameters:
|
308 |
+
- width_range: Tuple representing the range of width values (min_width, max_width).
|
309 |
+
- height_range: Tuple representing the range of height values (min_height, max_height).
|
310 |
+
|
311 |
+
Returns:
|
312 |
+
- box: Tuple representing the bounding box in the format (x1, y1, x2, y2).
|
313 |
+
"""
|
314 |
+
min_width, max_width = width_range
|
315 |
+
min_height, max_height = height_range
|
316 |
+
|
317 |
+
width = np.random.randint(min_width, max_width)
|
318 |
+
height = np.random.randint(min_height, max_height)
|
319 |
+
|
320 |
+
x1 = np.random.randint(0, 100 - width)
|
321 |
+
y1 = np.random.randint(0, 100 - height)
|
322 |
+
x2 = x1 + width
|
323 |
+
y2 = y1 + height
|
324 |
+
|
325 |
+
return x1, y1, x2, y2
|
326 |
+
|
327 |
+
|
328 |
+
def mask_to_bboxes(mask, margin_rate=2, pixel_thresh=300) -> pd.DataFrame:
|
329 |
+
nlabels, segmap, stats, centroids = cv2.connectedComponentsWithStats(
|
330 |
+
image=mask, connectivity=4
|
331 |
+
)
|
332 |
+
bboxes = pd.DataFrame(
|
333 |
+
stats[1:, :], columns=["bbox_x1", "bbox_y1", "width", "height", "pixel_count"]
|
334 |
+
)
|
335 |
+
img_width, img_height = _get_width_and_height(mask)
|
336 |
+
|
337 |
+
bboxes = bboxes[bboxes["pixel_count"].ge(pixel_thresh)]
|
338 |
+
|
339 |
+
bboxes["bbox_x2"] = bboxes["bbox_x1"] + bboxes["width"]
|
340 |
+
bboxes["bbox_y2"] = bboxes["bbox_y1"] + bboxes["height"]
|
341 |
+
|
342 |
+
bboxes["margin"] = bboxes.apply(
|
343 |
+
lambda x: int(
|
344 |
+
math.sqrt(
|
345 |
+
x["pixel_count"]
|
346 |
+
* min(x["width"], x["height"])
|
347 |
+
/ (x["width"] * x["height"])
|
348 |
+
)
|
349 |
+
* margin_rate
|
350 |
+
),
|
351 |
+
axis=1,
|
352 |
+
)
|
353 |
+
bboxes["bbox_x1"] = bboxes.apply(
|
354 |
+
lambda x: max(0, x["bbox_x1"] - x["margin"]), axis=1
|
355 |
+
)
|
356 |
+
bboxes["bbox_y1"] = bboxes.apply(
|
357 |
+
lambda x: max(0, x["bbox_y1"] - x["margin"]), axis=1
|
358 |
+
)
|
359 |
+
bboxes["bbox_x2"] = bboxes.apply(
|
360 |
+
lambda x: min(img_width, x["bbox_x2"] + x["margin"]), axis=1
|
361 |
+
)
|
362 |
+
bboxes["bbox_y2"] = bboxes.apply(
|
363 |
+
lambda x: min(img_height, x["bbox_y2"] + x["margin"]), axis=1
|
364 |
+
)
|
365 |
+
bboxes = bboxes[["bbox_x1", "bbox_y1", "bbox_x2", "bbox_y2"]]
|
366 |
+
img_width, img_height = _get_width_and_height(mask)
|
367 |
+
if img_width >= img_height:
|
368 |
+
bboxes.sort_values(by=["bbox_x1", "bbox_y1"], inplace=True)
|
369 |
+
else:
|
370 |
+
bboxes.sort_values(by=["bbox_y1", "bbox_x1"], inplace=True)
|
371 |
+
|
372 |
+
return bboxes
|
373 |
+
|
374 |
+
|
375 |
+
def bbox_to_mask(bboxes: list, mask_size):
|
376 |
+
"""
|
377 |
+
Creates a mask image based on bounding box coordinates.
|
378 |
+
|
379 |
+
Args:
|
380 |
+
- bboxes: list (x_min, y_min, x_max, y_max) representing the bounding box coordinates.
|
381 |
+
- mask_size: Tuple (height, width) representing the size of the mask image to be created.
|
382 |
+
|
383 |
+
Returns:
|
384 |
+
- Mask image with the specified bounding box area filled with white.
|
385 |
+
"""
|
386 |
+
# Initialize a black mask image with the specified size
|
387 |
+
mask = np.zeros(mask_size, dtype=np.uint8)
|
388 |
+
# mask = np.zeros_like(img).astype("uint8")
|
389 |
+
|
390 |
+
for bbox in bboxes:
|
391 |
+
# Extract bounding box coordinates
|
392 |
+
x_min, y_min, x_max, y_max = bbox
|
393 |
+
|
394 |
+
# Ensure bbox coordinates are within mask bounds
|
395 |
+
x_min = max(0, x_min)
|
396 |
+
y_min = max(0, y_min)
|
397 |
+
x_max = min(mask_size[1], x_max)
|
398 |
+
y_max = min(mask_size[0], y_max)
|
399 |
+
|
400 |
+
# Fill the bounding box area with white color in the mask image
|
401 |
+
mask[y_min:y_max, x_min:x_max] = 255
|
402 |
+
|
403 |
+
return mask
|
404 |
+
|
405 |
+
|
406 |
+
def move_box_a_to_center_of_box_b(A, B):
|
407 |
+
# Aμ Bμ μ’ν (l, t, r, b)
|
408 |
+
lA, tA, rA, bA = A
|
409 |
+
lB, tB, rB, bB = B
|
410 |
+
|
411 |
+
# λ°μ€ Aμ λλΉμ λμ΄
|
412 |
+
width_A = rA - lA
|
413 |
+
height_A = bA - tA
|
414 |
+
|
415 |
+
# λ°μ€ Bμ μ€μ¬ μ’ν
|
416 |
+
center_x_B = (lB + rB) / 2
|
417 |
+
center_y_B = (tB + bB) / 2
|
418 |
+
|
419 |
+
# λ°μ€ Aμ μλ‘μ΄ μ’ν (μ€μ¬μ Bμ μ€μ¬μΌλ‘ μ΄λ)
|
420 |
+
new_lA = center_x_B - width_A / 2
|
421 |
+
new_tA = center_y_B - height_A / 2
|
422 |
+
new_rA = center_x_B + width_A / 2
|
423 |
+
new_bA = center_y_B + height_A / 2
|
424 |
+
|
425 |
+
# μλ‘μ΄ A λ°μ€μ μ’ν λ°ν
|
426 |
+
return (new_lA, new_tA, new_rA, new_bA)
|
427 |
+
|
428 |
+
|
429 |
+
def scale_bboxes(bboxes, max_x, max_y, x_scale_factor=1.2, y_scale_factor=1.05):
|
430 |
+
# κΈ°μ‘΄ μ’νμμ κ° λ°μ€μ μ€μ¬ μ’ν, λλΉ, λμ΄ κ³μ°
|
431 |
+
bboxes["cx"] = (bboxes["bbox_x1"] + bboxes["bbox_x2"]) / 2
|
432 |
+
bboxes["cy"] = (bboxes["bbox_y1"] + bboxes["bbox_y2"]) / 2
|
433 |
+
bboxes["width"] = bboxes["bbox_x2"] - bboxes["bbox_x1"]
|
434 |
+
bboxes["height"] = bboxes["bbox_y2"] - bboxes["bbox_y1"]
|
435 |
+
|
436 |
+
# κ° λ°μ€μ ν¬κΈ°λ₯Ό 1.2λ°°λ‘ λλ¦Ό
|
437 |
+
bboxes["new_width"] = bboxes["width"] * x_scale_factor
|
438 |
+
bboxes["new_height"] = bboxes["height"] * y_scale_factor
|
439 |
+
|
440 |
+
# μλ‘μ΄ μ’ν κ³μ°
|
441 |
+
bboxes["new_x1"] = bboxes["cx"] - bboxes["new_width"] / 2
|
442 |
+
bboxes["new_y1"] = bboxes["cy"] - bboxes["new_height"] / 2
|
443 |
+
bboxes["new_x2"] = bboxes["cx"] + bboxes["new_width"] / 2
|
444 |
+
bboxes["new_y2"] = bboxes["cy"] + bboxes["new_height"] / 2
|
445 |
+
|
446 |
+
# box λ²μ μ ν
|
447 |
+
bboxes["new_x1"] = bboxes["new_x1"].clip(lower=0).astype(int)
|
448 |
+
bboxes["new_y1"] = bboxes["new_y1"].clip(lower=0).astype(int)
|
449 |
+
bboxes["new_x2"] = bboxes["new_x2"].clip(upper=max_x).astype(int)
|
450 |
+
bboxes["new_y2"] = bboxes["new_y2"].clip(upper=max_y).astype(int)
|
451 |
+
|
452 |
+
# κ²°κ³Ό λ°μ΄ν°νλ μ μμ±
|
453 |
+
new_bboxes = bboxes[
|
454 |
+
["ori_content", "new_x1", "new_y1", "new_x2", "new_y2", "predicted_lang"]
|
455 |
+
].copy()
|
456 |
+
new_bboxes.columns = [
|
457 |
+
"ori_content",
|
458 |
+
"bbox_x1",
|
459 |
+
"bbox_y1",
|
460 |
+
"bbox_x2",
|
461 |
+
"bbox_y2",
|
462 |
+
"predicted_lang",
|
463 |
+
]
|
464 |
+
|
465 |
+
return new_bboxes
|
466 |
+
|
467 |
+
|
468 |
+
if __name__ == "__main__":
|
469 |
+
w_range = (100, 200)
|
470 |
+
h_range = (100, 200)
|
471 |
+
|
472 |
+
box1 = generate_random_box(w_range, h_range)
|
473 |
+
box2 = generate_random_box(w_range, h_range)
|
474 |
+
|
475 |
+
print(f"box1 coors : {box1}")
|
476 |
+
print(f"box2 coors : {box2}")
|
477 |
+
|
478 |
+
print(f"intersection area : {intersection_area(box1,box2)}")
|
479 |
+
iou = bbox_iou(box1, box2)
|
480 |
+
giou = bbox_iou(box1, box2, GIoU=True)
|
481 |
+
diou = bbox_iou(box1, box2, DIoU=True)
|
482 |
+
ciou = bbox_iou(box1, box2, CIoU=True)
|
483 |
+
print(iou, giou, diou, ciou)
|
data_utils/color_utils.py
ADDED
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import convcolors
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from colormap import rgb2hex
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
|
9 |
+
import extcolors
|
10 |
+
from skimage.color import deltaE_cie76
|
11 |
+
import math
|
12 |
+
|
13 |
+
from data_utils import timeit
|
14 |
+
|
15 |
+
from data_utils.image_utils import (
|
16 |
+
_to_pil,
|
17 |
+
_get_pseudo_image,
|
18 |
+
_mask_image,
|
19 |
+
_get_width_and_height,
|
20 |
+
_resize_image,
|
21 |
+
_figure_to_array,
|
22 |
+
load_image,
|
23 |
+
_to_2d,
|
24 |
+
)
|
25 |
+
|
26 |
+
np.set_printoptions(precision=3, edgeitems=20, linewidth=sys.maxsize, suppress=False)
|
27 |
+
|
28 |
+
|
29 |
+
def _to_tuple(color):
|
30 |
+
if isinstance(color, tuple):
|
31 |
+
return color
|
32 |
+
elif isinstance(color, str):
|
33 |
+
if color[:3] == "rgb":
|
34 |
+
return eval(color.replace("rgb", ""))
|
35 |
+
elif color[:3] == "lab":
|
36 |
+
return eval(color.replace("lab", ""))
|
37 |
+
elif isinstance(color, np.ndarray):
|
38 |
+
return tuple(color)
|
39 |
+
|
40 |
+
|
41 |
+
def _to_str(color, color_space):
|
42 |
+
if isinstance(color, str):
|
43 |
+
return color
|
44 |
+
elif isinstance(color, tuple):
|
45 |
+
if color_space == "rgb":
|
46 |
+
return f"""rgb{color}"""
|
47 |
+
elif color_space == "lab":
|
48 |
+
return f"""lab{color}"""
|
49 |
+
|
50 |
+
|
51 |
+
def _to_rgb(color):
|
52 |
+
if isinstance(color, str):
|
53 |
+
if color[:3] == "rgb":
|
54 |
+
color = eval(color.replace("rgb", ""))
|
55 |
+
return color
|
56 |
+
elif color[:3] == "lab":
|
57 |
+
color = eval(color.replace("lab", ""))
|
58 |
+
color = convcolors.lab_to_rgb(color)
|
59 |
+
color = tuple([round(i) for i in color])
|
60 |
+
return _to_str(color, color_space="rgb")
|
61 |
+
|
62 |
+
|
63 |
+
def _to_lab(color):
|
64 |
+
if isinstance(color, str):
|
65 |
+
if color[:3] == "rgb":
|
66 |
+
color = eval(color.replace("rgb", ""))
|
67 |
+
color = convcolors.rgb_to_lab(color)
|
68 |
+
color = tuple([round(i) for i in color])
|
69 |
+
return _to_str(color, color_space="lab")
|
70 |
+
elif color[:3] == "lab":
|
71 |
+
return color
|
72 |
+
|
73 |
+
|
74 |
+
def _extract_colors(img, mask=None, invert=False, tolerance=10, limit=4):
|
75 |
+
# img(H,W,3), mask(H,W)
|
76 |
+
if mask is None or np.any(mask) == False:
|
77 |
+
pseudo_outer = img
|
78 |
+
else:
|
79 |
+
pseudo_outer = _get_pseudo_image(img=img, mask=mask, invert=invert)
|
80 |
+
|
81 |
+
colors = extcolors.extract_from_image(
|
82 |
+
img=_to_pil(pseudo_outer), tolerance=tolerance, limit=limit
|
83 |
+
)[0]
|
84 |
+
sum_freqs = sum([i[1] for i in colors])
|
85 |
+
|
86 |
+
return [
|
87 |
+
{
|
88 |
+
"rgb": rgb,
|
89 |
+
"hex_code": rgb2hex(*rgb),
|
90 |
+
"percentage": round(freq / sum_freqs, 3),
|
91 |
+
}
|
92 |
+
for rgb, freq in colors
|
93 |
+
]
|
94 |
+
|
95 |
+
|
96 |
+
def get_palette(colors, img=None, mask=None, invert=False, index=None, zoom=4):
|
97 |
+
rgbs = [i["rgb"] for i in colors]
|
98 |
+
pers = [i["percentage"] for i in colors]
|
99 |
+
hex_codes = [i["hex_code"] for i in colors]
|
100 |
+
|
101 |
+
labels = [
|
102 |
+
f"""{str(rgb)}\n{str(round(per * 100, 1))}%""" for rgb, per in zip(rgbs, pers)
|
103 |
+
]
|
104 |
+
explode = [0] * len(rgbs)
|
105 |
+
if index is not None:
|
106 |
+
explode[index] = 0.05
|
107 |
+
|
108 |
+
fig, ax = plt.subplots(figsize=(30, 20), dpi=15)
|
109 |
+
wedges, _ = ax.pie(
|
110 |
+
x=pers,
|
111 |
+
labels=labels,
|
112 |
+
labeldistance=1.07,
|
113 |
+
colors=hex_codes,
|
114 |
+
textprops={"fontsize": 50, "color": "black"},
|
115 |
+
wedgeprops={"edgecolor": "black", "linewidth": 7},
|
116 |
+
startangle=90,
|
117 |
+
radius=1,
|
118 |
+
counterclock=False,
|
119 |
+
explode=explode,
|
120 |
+
)
|
121 |
+
plt.setp(wedges, width=0.3)
|
122 |
+
plt.setp(wedges, width=0.26)
|
123 |
+
|
124 |
+
ax.set_aspect("equal")
|
125 |
+
|
126 |
+
if img is not None:
|
127 |
+
if mask is not None:
|
128 |
+
img = _mask_image(img=img, mask=mask, invert=invert)
|
129 |
+
w, h = _get_width_and_height(img)
|
130 |
+
if w >= h:
|
131 |
+
resized_img = _resize_image(img=img, w=400, h=int(400 * h / w))
|
132 |
+
else:
|
133 |
+
resized_img = _resize_image(img=img, w=int(400 * w / h), h=400)
|
134 |
+
offset_img = OffsetImage(resized_img.astype("float32") / 255, zoom=zoom)
|
135 |
+
annot_box = AnnotationBbox(offsetbox=offset_img, xy=(0, 0))
|
136 |
+
ax.add_artist(annot_box)
|
137 |
+
fig.tight_layout()
|
138 |
+
palette = _figure_to_array(fig)
|
139 |
+
|
140 |
+
plt.close()
|
141 |
+
return palette
|
142 |
+
|
143 |
+
|
144 |
+
def _get_complementary_color(color):
|
145 |
+
if isinstance(color, str):
|
146 |
+
color = _to_tuple(color)
|
147 |
+
return f"""rgb{tuple([255 - rgb for rgb in color])}"""
|
148 |
+
if isinstance(color, tuple):
|
149 |
+
return tuple([255 - rgb for rgb in color])
|
150 |
+
|
151 |
+
|
152 |
+
def _linearize(x):
|
153 |
+
if isinstance(x, np.ndarray):
|
154 |
+
x = x.astype("float64")
|
155 |
+
x /= 255
|
156 |
+
return np.where(x <= 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
|
157 |
+
elif isinstance(x, (int, np.uint8)):
|
158 |
+
x /= 255
|
159 |
+
if x <= 0.04045:
|
160 |
+
return x / 12.92
|
161 |
+
else:
|
162 |
+
return ((x + 0.055) / 1.055) ** 2.4
|
163 |
+
|
164 |
+
|
165 |
+
def _get_relative_luminance(x):
|
166 |
+
if isinstance(x, str):
|
167 |
+
return _get_relative_luminance(_to_tuple(_to_rgb(x)))
|
168 |
+
elif isinstance(x, np.ndarray):
|
169 |
+
x = _linearize(x)
|
170 |
+
return np.round(0.2126 * x[..., 0] + 0.7152 * x[..., 1] + 0.0722 * x[..., 2], 3)
|
171 |
+
elif isinstance(x, tuple):
|
172 |
+
assert len(x) == 3, "If the argument `x` is tuple, it should have 3 elements."
|
173 |
+
|
174 |
+
return round(
|
175 |
+
0.2126 * _linearize(x[0])
|
176 |
+
+ 0.7152 * _linearize(x[1])
|
177 |
+
+ 0.0722 * _linearize(x[2]),
|
178 |
+
3,
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
def rgb_to_lab(rgb: tuple):
|
183 |
+
rgb = np.uint8([[list(rgb)]])
|
184 |
+
lab = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB)
|
185 |
+
return tuple(lab[0][0])
|
186 |
+
|
187 |
+
|
188 |
+
def lab_to_rgb(lab):
|
189 |
+
lab = np.uint8([[list(lab)]])
|
190 |
+
rgb = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
|
191 |
+
return tuple(rgb[0][0])
|
192 |
+
|
193 |
+
|
194 |
+
def get_contrast(x, y):
|
195 |
+
l1 = _get_relative_luminance(x)
|
196 |
+
l2 = _get_relative_luminance(y)
|
197 |
+
|
198 |
+
if isinstance(l1, float) and isinstance(l2, float):
|
199 |
+
return (
|
200 |
+
round((l1 + 0.05) / (l2 + 0.05), 1)
|
201 |
+
if l1 > l2
|
202 |
+
else round((l2 + 0.05) / (l1 + 0.05), 1)
|
203 |
+
)
|
204 |
+
elif isinstance(l1, np.ndarray) or isinstance(l2, np.ndarray):
|
205 |
+
return np.where(
|
206 |
+
l1 > l2,
|
207 |
+
np.round((l1 + 0.05) / (l2 + 0.05), 1),
|
208 |
+
np.round((l2 + 0.05) / (l1 + 0.05), 1),
|
209 |
+
)
|
210 |
+
|
211 |
+
|
212 |
+
def adjust_luminance_for_contrast(color1, color2, th=4.5):
|
213 |
+
"""color2(text_color)λ₯Ό color1(back ground color)κ³Ό λλΉλκ° th μ΄μμ΄ λλλ‘ color2(μ λͺ
λ)λ₯Ό μμ ν©λλ€.
|
214 |
+
lab νμμ μ¬μ©νκΈ° λλ¬Έμ color2μ μ λ³νλ₯Ό μ΅μν ν©λλ€.
|
215 |
+
color1μ΄ μ΄λ‘λ€λ©΄, color2λ λ°μμ§κ³ , color1μ΄ λ°λ€λ©΄, color2λ μ΄λμ μ§λλ€.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
color1 (_tuple_): κΈ°μ€ μ. ν΄λΉ μμ λ°λμ§ μλ μμ΄λ©°, λλΉλ μΈ‘μ μ κΈ°μ€μ΄ λλ μμ
λλ€. ex.back ground color
|
219 |
+
color2 (_tuple_): λ³νλ₯Ό μ€ μ. ex. text color
|
220 |
+
th (float, optional): λλΉλ μκ³κ°. color1κ³Ό color2μ λλΉλκ° ν΄λΉ μμΉ μ΄μμ΄ λλκ²μ λͺ©νλ‘ ν©λλ€. Defaults to 4.5.
|
221 |
+
type (str, optional): μμ νμ
"rgb" or "lab". Defaults to "rgb".
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
_tuple_: new color2
|
225 |
+
"""
|
226 |
+
initial_cont = get_contrast(color1, color2)
|
227 |
+
if initial_cont >= th:
|
228 |
+
return color2
|
229 |
+
lab1 = rgb_to_lab(color1)
|
230 |
+
lab2 = rgb_to_lab(color2)
|
231 |
+
|
232 |
+
plus_cont, minus_cont = initial_cont, initial_cont
|
233 |
+
plus_l, minus_l = lab2, lab2
|
234 |
+
max_iterations = 100
|
235 |
+
plus_iteration = 0
|
236 |
+
minus_iteration = 0
|
237 |
+
step = 3
|
238 |
+
|
239 |
+
if lab1[0] >= 127:
|
240 |
+
while minus_iteration < max_iterations: # minus iteration
|
241 |
+
minus_l = (min(minus_l[0] - step, 255), minus_l[1], minus_l[2])
|
242 |
+
minus_cont = get_contrast(lab_to_rgb(lab1), lab_to_rgb(minus_l))
|
243 |
+
|
244 |
+
if minus_cont >= th:
|
245 |
+
return lab_to_rgb(minus_l)
|
246 |
+
minus_iteration += 1
|
247 |
+
else:
|
248 |
+
while plus_iteration < max_iterations: # plus iteration
|
249 |
+
plus_l = (min(plus_l[0] + step, 255), plus_l[1], plus_l[2])
|
250 |
+
plus_cont = get_contrast(lab_to_rgb(lab1), lab_to_rgb(plus_l))
|
251 |
+
|
252 |
+
if plus_cont >= th:
|
253 |
+
return lab_to_rgb(plus_l)
|
254 |
+
plus_iteration += 1
|
255 |
+
return color2
|
256 |
+
|
257 |
+
|
258 |
+
def get_readability(color, bg, contrast_thresh=2.5):
|
259 |
+
contrast = get_contrast(_to_tuple(color), bg)
|
260 |
+
below_thresh = contrast[contrast < contrast_thresh]
|
261 |
+
if below_thresh.size == 0:
|
262 |
+
return 21
|
263 |
+
else:
|
264 |
+
return below_thresh.mean()
|
265 |
+
|
266 |
+
|
267 |
+
def _blend_two_colors(color1, color2, ratio=0.5):
|
268 |
+
blended = np.array(_to_tuple(_to_lab(color1))) * ratio + np.array(
|
269 |
+
_to_tuple(_to_lab(color2))
|
270 |
+
) * (1 - ratio)
|
271 |
+
blended = _to_rgb(_to_str(_to_tuple(blended), color_space="lab"))
|
272 |
+
return blended
|
273 |
+
|
274 |
+
|
275 |
+
def get_colorfulness(img):
|
276 |
+
try:
|
277 |
+
r, g, b = cv2.split(img.astype("float"))
|
278 |
+
rg = np.absolute(r - g)
|
279 |
+
yb = np.absolute((r + g) / 2 - b)
|
280 |
+
rg_mean, rg_std = np.mean(rg), np.std(rg)
|
281 |
+
yb_mean, yb_std = np.mean(yb), np.std(yb)
|
282 |
+
std_root = np.sqrt((rg_std**2) + (yb_std**2))
|
283 |
+
mean_root = np.sqrt((rg_mean**2) + (yb_mean**2))
|
284 |
+
colorfulness = std_root + (0.3 * mean_root)
|
285 |
+
except ValueError:
|
286 |
+
colorfulness = 0
|
287 |
+
return colorfulness
|
288 |
+
|
289 |
+
|
290 |
+
def get_colorfulness_by_extracting_colors(img, limit=20):
|
291 |
+
colors = _extract_colors(img=img, tolerance=10, limit=limit)
|
292 |
+
pers = [i["percentage"] for i in colors]
|
293 |
+
colorfulness = (np.array(pers).cumsum() < 0.98).sum()
|
294 |
+
return colorfulness
|
295 |
+
|
296 |
+
|
297 |
+
def _colors_to_pseudo_image(colors):
|
298 |
+
pseudo_img = np.array(colors, dtype="uint8")[None, ...]
|
299 |
+
return pseudo_img
|
300 |
+
|
301 |
+
|
302 |
+
def _pick_most_colors(colors, tolerance):
|
303 |
+
pseudo_img = _colors_to_pseudo_image(colors)
|
304 |
+
most_colors = extcolors.extract_from_image(
|
305 |
+
img=_to_pil(pseudo_img), tolerance=tolerance, limit=len(colors)
|
306 |
+
)[0]
|
307 |
+
most_colors = [i[0] for i in most_colors]
|
308 |
+
return most_colors
|
309 |
+
|
310 |
+
|
311 |
+
def _get_euclidean_distance(color1, color2):
|
312 |
+
return deltaE_cie76(
|
313 |
+
np.array(convcolors.rgb_to_lab(color1))[None, None, ...],
|
314 |
+
np.array(convcolors.rgb_to_lab(color2))[None, None, ...],
|
315 |
+
)[0][0]
|
316 |
+
|
317 |
+
|
318 |
+
def is_similar_black_or_gray(color) -> str:
|
319 |
+
# color = (R,G,B)
|
320 |
+
black_distance = _get_euclidean_distance(color, (0, 0, 0))
|
321 |
+
gray_distance = _get_euclidean_distance(color, (128, 128, 128))
|
322 |
+
if black_distance < gray_distance:
|
323 |
+
return "black"
|
324 |
+
else:
|
325 |
+
return "gray"
|
326 |
+
|
327 |
+
|
328 |
+
def is_similar_white_or_gray(color) -> str:
|
329 |
+
# color = (R,G,B)
|
330 |
+
gray_distance = _get_euclidean_distance(color, (128, 128, 128))
|
331 |
+
white_distance = _get_euclidean_distance(color, (255, 255, 255))
|
332 |
+
if white_distance < gray_distance:
|
333 |
+
return "white"
|
334 |
+
else:
|
335 |
+
return "gray"
|
336 |
+
|
337 |
+
|
338 |
+
def is_similar_white_or_black(color) -> str:
|
339 |
+
# color = (R,G,B)
|
340 |
+
black_distance = _get_euclidean_distance(color, (0, 0, 0))
|
341 |
+
white_distance = _get_euclidean_distance(color, (255, 255, 255))
|
342 |
+
if white_distance < black_distance:
|
343 |
+
return "white"
|
344 |
+
else:
|
345 |
+
return "black"
|
346 |
+
|
347 |
+
|
348 |
+
def view_hist(img):
|
349 |
+
color = ("r", "g", "b")
|
350 |
+
for i, col in enumerate(color):
|
351 |
+
hist = cv2.calcHist([img], [i], None, [256], [0, 256])
|
352 |
+
plt.plot(hist, color=col)
|
353 |
+
plt.savefig("calc_hist.png")
|
354 |
+
|
355 |
+
|
356 |
+
def normalize_image(img):
|
357 |
+
img_norm = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
|
358 |
+
return img_norm
|
359 |
+
|
360 |
+
|
361 |
+
def equalize_hist(img):
|
362 |
+
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
363 |
+
# hist = cv2.calcHist([gray_img],[0],None,[256],[0,256])
|
364 |
+
# ycrcb_img = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
|
365 |
+
# ycrcb_img[:, :, 0] = cv2.equalizeHist(ycrcb_img[:, :, 0])
|
366 |
+
|
367 |
+
# equalized_img = cv2.cvtColor(ycrcb_img, cv2.COLOR_YCrCb2RGB)
|
368 |
+
|
369 |
+
# make contras limiting adaptive histogram equalization
|
370 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
371 |
+
equalized_img = clahe.apply(gray_img)
|
372 |
+
|
373 |
+
return equalized_img
|
374 |
+
|
375 |
+
|
376 |
+
def is_gray(color, threshold=30):
|
377 |
+
r, g, b = map(int, color) # color type is np.uint8. cast int to prevent overflow
|
378 |
+
if abs(r - g) < threshold and abs(r - b) < threshold and abs(g - b) < threshold:
|
379 |
+
return True
|
380 |
+
return False
|
381 |
+
|
382 |
+
|
383 |
+
def merge_similar_colors(colors, tolerance=10):
|
384 |
+
most_colors = _pick_most_colors(colors, tolerance=tolerance)
|
385 |
+
|
386 |
+
new_colors = list()
|
387 |
+
for color in colors:
|
388 |
+
minim = math.inf
|
389 |
+
for most_color in most_colors:
|
390 |
+
dist = _get_euclidean_distance(color, most_color)
|
391 |
+
if dist < minim:
|
392 |
+
picked = most_color
|
393 |
+
minim = dist
|
394 |
+
new_colors.append(picked)
|
395 |
+
return new_colors
|
396 |
+
|
397 |
+
|
398 |
+
def merge_colors(colors, tolerance=10):
|
399 |
+
temp = [eval(i[3:]) for i in colors]
|
400 |
+
# print(len(set(temp)))
|
401 |
+
pseudo_img = np.array([temp], dtype="uint8")
|
402 |
+
# _to_pil(pseudo_img).show()
|
403 |
+
|
404 |
+
extracted_colors = _extract_colors(
|
405 |
+
pseudo_img,
|
406 |
+
mask=None,
|
407 |
+
invert=False,
|
408 |
+
tolerance=tolerance,
|
409 |
+
limit=len(colors) // 2,
|
410 |
+
)
|
411 |
+
# print(len(extracted_colors))
|
412 |
+
|
413 |
+
new_colors = list()
|
414 |
+
for i in temp:
|
415 |
+
min_dist = math.inf
|
416 |
+
for c in extracted_colors:
|
417 |
+
dist = _get_euclidean_distance(c["rgb"], i)
|
418 |
+
if dist < min_dist:
|
419 |
+
min_dist = dist
|
420 |
+
best = c["rgb"]
|
421 |
+
new_colors.append(best)
|
422 |
+
return [_to_str(i, color_space="rgb") for i in new_colors]
|
423 |
+
|
424 |
+
|
425 |
+
def get_most_color(img, mask=None, min_count=10, get_full=False):
|
426 |
+
# img=(H,W,3) (0~255), mask=(H,W,3) (0 or 255)
|
427 |
+
if mask is None:
|
428 |
+
img_pixels = img.reshape(-1, 3)
|
429 |
+
else:
|
430 |
+
img_pixels = img[_to_2d(mask) == 255]
|
431 |
+
|
432 |
+
colors, colors_counts = np.unique(img_pixels, axis=0, return_counts=True)
|
433 |
+
|
434 |
+
if colors_counts.max() <= min_count:
|
435 |
+
most_color = tuple(
|
436 |
+
(
|
437 |
+
(colors_counts[:, np.newaxis] * colors).sum(axis=0)
|
438 |
+
/ colors_counts.sum()
|
439 |
+
).astype(np.uint8)
|
440 |
+
)
|
441 |
+
else:
|
442 |
+
most_color = tuple(colors[np.argmax(colors_counts)])
|
443 |
+
|
444 |
+
if get_full:
|
445 |
+
return colors, colors_counts
|
446 |
+
|
447 |
+
return most_color, colors_counts.max() # (R,G,B), color count
|
448 |
+
|
449 |
+
|
450 |
+
if __name__ == "__main__":
|
451 |
+
img = load_image(
|
452 |
+
"/Users/jongbeomkim/Desktop/Screen Shot 2023-11-07 at 10.41.23 AM.png"
|
453 |
+
)
|
454 |
+
contrast = get_contrast("rgb(10, 100, 100)", img)
|
455 |
+
below_thresh = contrast[contrast < 0]
|
456 |
+
if below_thresh.size == 0:
|
457 |
+
21
|
458 |
+
else:
|
459 |
+
below_thresh.mean()
|
460 |
+
|
461 |
+
colors = [
|
462 |
+
"rgb(0, 0, 0)",
|
463 |
+
"rgb(95, 95, 95)",
|
464 |
+
"rgb(184, 137, 91)",
|
465 |
+
"rgb(0, 0, 0)",
|
466 |
+
"rgb(0, 0, 0)",
|
467 |
+
"rgb(93, 93, 93)",
|
468 |
+
"rgb(182, 142, 93)",
|
469 |
+
"rgb(0, 0, 0)",
|
470 |
+
"rgb(0, 0, 0)",
|
471 |
+
"rgb(99, 99, 99)",
|
472 |
+
"rgb(0, 0, 0)",
|
473 |
+
"rgb(0, 0, 0)",
|
474 |
+
"rgb(90, 90, 90)",
|
475 |
+
"rgb(184, 141, 90)",
|
476 |
+
"rgb(0, 0, 0)",
|
477 |
+
"rgb(0, 0, 0)",
|
478 |
+
"rgb(93, 93, 93)",
|
479 |
+
"rgb(14, 14, 14)",
|
480 |
+
"rgb(17, 17, 17)",
|
481 |
+
"rgb(101, 101, 101)",
|
482 |
+
"rgb(97, 97, 97)",
|
483 |
+
"rgb(193, 193, 193)",
|
484 |
+
"rgb(122, 122, 122)",
|
485 |
+
"rgb(122, 122, 122)",
|
486 |
+
"rgb(0, 0, 0)",
|
487 |
+
"rgb(118, 118, 118)",
|
488 |
+
]
|
489 |
+
new_colors = merge_colors(colors, tolerance=30)
|
490 |
+
new_colors
|
data_utils/conf.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional
|
3 |
+
from dataclasses_json import dataclass_json
|
4 |
+
import json
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class Slack:
|
10 |
+
url: str
|
11 |
+
channel: str
|
12 |
+
username: str
|
13 |
+
icon_emoji: str
|
14 |
+
channel_id: Optional[str] = None
|
15 |
+
bot_token: Optional[str] = None
|
16 |
+
|
17 |
+
|
18 |
+
class Config(object):
|
19 |
+
def __init__(self, env="dev"):
|
20 |
+
if env == "dev":
|
21 |
+
config_path = Path(__file__).parent.parent / "config/config.dev.json"
|
22 |
+
else:
|
23 |
+
config_path = Path(__file__).parent.parent / "config/config.prod.json"
|
24 |
+
config = self._read_config(config_path)
|
25 |
+
self.awss3_bucket, self.awss3_path = self.__parse_awss3_storage(
|
26 |
+
config.get("storage", {}).get("awss3", {})
|
27 |
+
)
|
28 |
+
|
29 |
+
(
|
30 |
+
self.requested_img_path,
|
31 |
+
self.text_removed_img_path,
|
32 |
+
) = self.__parse_local_storage(config.get("storage", {}).get("local", {}))
|
33 |
+
|
34 |
+
self.mq_url = self._parse_amqp_server(config["mq_server"])
|
35 |
+
|
36 |
+
(
|
37 |
+
self.req_queue,
|
38 |
+
self.req_pattern,
|
39 |
+
self.resp_queue,
|
40 |
+
self.success_resp_pattern,
|
41 |
+
self.failure_resp_pattern,
|
42 |
+
) = self._parse_queue(config["queue"])
|
43 |
+
|
44 |
+
self.slack = self._parse_slack(config["alarm"]["slack"])
|
45 |
+
|
46 |
+
def _read_config(self, config_path) -> dict:
|
47 |
+
with open(config_path, mode="r") as f:
|
48 |
+
config = json.load(f)
|
49 |
+
return config
|
50 |
+
|
51 |
+
def _parse_amqp_server(self, amqp_server) -> str:
|
52 |
+
username = amqp_server["username"]
|
53 |
+
password = amqp_server["password"]
|
54 |
+
url = amqp_server["url"]
|
55 |
+
port = amqp_server["port"]
|
56 |
+
amqp_url = f"amqps://{username}:{password}@{url}:{port}"
|
57 |
+
return amqp_url
|
58 |
+
|
59 |
+
def _parse_queue(self, queue) -> tuple:
|
60 |
+
req_queue = queue["request_name"]
|
61 |
+
req_pattern = queue["request_pattern"]
|
62 |
+
resp_queue = queue.get("response_name")
|
63 |
+
success_resp_pattern = queue["success_response_pattern"]
|
64 |
+
failure_resp_pattern = queue["failure_response_pattern"]
|
65 |
+
return (
|
66 |
+
req_queue,
|
67 |
+
req_pattern,
|
68 |
+
resp_queue,
|
69 |
+
success_resp_pattern,
|
70 |
+
failure_resp_pattern,
|
71 |
+
)
|
72 |
+
|
73 |
+
def __parse_awss3_storage(self, awss3_storage) -> tuple:
|
74 |
+
awss3_bucket = awss3_storage.get("default_bucket")
|
75 |
+
awss3_path = awss3_storage.get("default_path")
|
76 |
+
|
77 |
+
return awss3_bucket, awss3_path
|
78 |
+
|
79 |
+
def __parse_local_storage(self, local_storage) -> tuple:
|
80 |
+
requested_img_path = local_storage.get("requested")
|
81 |
+
text_removed_img_path = local_storage.get("text_removed")
|
82 |
+
|
83 |
+
return requested_img_path, text_removed_img_path
|
84 |
+
|
85 |
+
def _parse_slack(self, slack) -> Slack:
|
86 |
+
url = slack["url"]
|
87 |
+
channel = slack["channel"]
|
88 |
+
username = slack["username"]
|
89 |
+
icon_emoji = slack["icon_emoji"]
|
90 |
+
channel_id = slack.get("channel_id", None)
|
91 |
+
bot_token = slack.get("bot_token", None)
|
92 |
+
|
93 |
+
return Slack(url, channel, username, icon_emoji, channel_id, bot_token)
|
94 |
+
|
95 |
+
|
96 |
+
class ImageTrConfig(object):
|
97 |
+
def __init__(self, env="dev"):
|
98 |
+
if env == "dev":
|
99 |
+
config_path = Path(__file__).parent.parent / "config/config.dev.json"
|
100 |
+
else:
|
101 |
+
config_path = Path(__file__).parent.parent / "config/config.prod.json"
|
102 |
+
config = self._read_config(config_path)
|
103 |
+
|
104 |
+
(
|
105 |
+
self.awss3_bucket,
|
106 |
+
self.awss3_inpainting_path,
|
107 |
+
self.awss3_translation_path,
|
108 |
+
) = self.__parse_awss3_storage(config.get("storage", {}).get("awss3", {}))
|
109 |
+
|
110 |
+
self.mq_url = self._parse_amqp_server(config["mq_server"])
|
111 |
+
|
112 |
+
(
|
113 |
+
self.req_queue,
|
114 |
+
self.req_pattern,
|
115 |
+
self.resp_queue,
|
116 |
+
self.success_resp_pattern,
|
117 |
+
self.failure_resp_pattern,
|
118 |
+
) = self._parse_queue(config["queue"])
|
119 |
+
|
120 |
+
self.slack = self._parse_slack(config["alarm"]["slack"])
|
121 |
+
|
122 |
+
def _read_config(self, config_path) -> dict:
|
123 |
+
with open(config_path, mode="r") as f:
|
124 |
+
config = json.load(f)
|
125 |
+
return config
|
126 |
+
|
127 |
+
def _parse_amqp_server(self, amqp_server) -> str:
|
128 |
+
username = amqp_server["username"]
|
129 |
+
password = amqp_server["password"]
|
130 |
+
url = amqp_server["url"]
|
131 |
+
port = amqp_server["port"]
|
132 |
+
amqp_url = f"amqps://{username}:{password}@{url}:{port}"
|
133 |
+
return amqp_url
|
134 |
+
|
135 |
+
def _parse_queue(self, queue) -> tuple:
|
136 |
+
req_queue = queue["request_name"]
|
137 |
+
req_pattern = queue["request_pattern"]
|
138 |
+
resp_queue = queue.get("response_name")
|
139 |
+
success_resp_pattern = queue["success_response_pattern"]
|
140 |
+
failure_resp_pattern = queue["failure_response_pattern"]
|
141 |
+
return (
|
142 |
+
req_queue,
|
143 |
+
req_pattern,
|
144 |
+
resp_queue,
|
145 |
+
success_resp_pattern,
|
146 |
+
failure_resp_pattern,
|
147 |
+
)
|
148 |
+
|
149 |
+
def __parse_awss3_storage(self, awss3_storage) -> tuple:
|
150 |
+
awss3_bucket = awss3_storage.get("default_bucket")
|
151 |
+
awss3_inpainting_path = awss3_storage.get("inpainting_path")
|
152 |
+
awss3_translation_path = awss3_storage.get("translation_path")
|
153 |
+
|
154 |
+
return awss3_bucket, awss3_inpainting_path, awss3_translation_path
|
155 |
+
|
156 |
+
def __parse_local_storage(self, local_storage) -> tuple:
|
157 |
+
requested_img_path = local_storage.get("requested")
|
158 |
+
text_removed_img_path = local_storage.get("text_removed")
|
159 |
+
|
160 |
+
return requested_img_path, text_removed_img_path
|
161 |
+
|
162 |
+
def _parse_slack(self, slack) -> Slack:
|
163 |
+
url = slack["url"]
|
164 |
+
channel = slack["channel"]
|
165 |
+
username = slack["username"]
|
166 |
+
icon_emoji = slack["icon_emoji"]
|
167 |
+
channel_id = slack.get("channel_id", None)
|
168 |
+
bot_token = slack.get("bot_token", None)
|
169 |
+
|
170 |
+
return Slack(url, channel, username, icon_emoji, channel_id, bot_token)
|
data_utils/image_utils.py
ADDED
@@ -0,0 +1,1364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# References
|
2 |
+
# https://sashamaps.net/docs/resources/20-colors/
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from scipy import ndimage as ndi
|
7 |
+
from PIL import Image, ImageDraw, ImageCms, ExifTags, ImageEnhance
|
8 |
+
import requests
|
9 |
+
from pathlib import Path
|
10 |
+
import pandas as pd
|
11 |
+
from scipy.sparse import coo_matrix
|
12 |
+
from skimage.feature import peak_local_max
|
13 |
+
from skimage.morphology import local_maxima
|
14 |
+
from skimage.segmentation import watershed
|
15 |
+
from moviepy.video.io.bindings import mplfig_to_npimage
|
16 |
+
import io
|
17 |
+
import os
|
18 |
+
from enum import Enum
|
19 |
+
|
20 |
+
|
21 |
+
COLORS = (
|
22 |
+
(230, 25, 75),
|
23 |
+
(60, 180, 75),
|
24 |
+
(255, 255, 25),
|
25 |
+
(0, 130, 200),
|
26 |
+
(245, 130, 48),
|
27 |
+
(145, 30, 180),
|
28 |
+
(70, 240, 250),
|
29 |
+
(240, 50, 230),
|
30 |
+
(210, 255, 60),
|
31 |
+
(250, 190, 212),
|
32 |
+
(0, 128, 128),
|
33 |
+
(220, 190, 255),
|
34 |
+
(170, 110, 40),
|
35 |
+
(255, 250, 200),
|
36 |
+
(128, 0, 0),
|
37 |
+
(170, 255, 195),
|
38 |
+
(128, 128, 0),
|
39 |
+
(255, 215, 180),
|
40 |
+
(0, 0, 128),
|
41 |
+
(128, 128, 128),
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
class PC_TYPE(Enum):
|
46 |
+
HARRIS = 1
|
47 |
+
EDGES_CONTOURS = 2
|
48 |
+
GFTT = 3
|
49 |
+
FAST = 4
|
50 |
+
KAZE = 5
|
51 |
+
|
52 |
+
|
53 |
+
def _to_2d(img):
|
54 |
+
# it use just first channel. if you want rgb2gray, use _to_grayscale
|
55 |
+
if img.ndim == 3:
|
56 |
+
return img[:, :, 0]
|
57 |
+
else:
|
58 |
+
return img
|
59 |
+
|
60 |
+
|
61 |
+
def _to_3d(img):
|
62 |
+
if img.ndim == 2:
|
63 |
+
return np.dstack([img, img, img])
|
64 |
+
else:
|
65 |
+
return img
|
66 |
+
|
67 |
+
|
68 |
+
def _to_byte(img: Image, format) -> bytes:
|
69 |
+
# BytesIO is a file-like buffer stored in memory
|
70 |
+
imgByteArr = io.BytesIO()
|
71 |
+
# image.save expects a file-like as a argument
|
72 |
+
img.save(imgByteArr, format=format)
|
73 |
+
# Turn the BytesIO object back into a bytes object
|
74 |
+
imgByteArr = imgByteArr.getvalue()
|
75 |
+
return imgByteArr
|
76 |
+
|
77 |
+
|
78 |
+
def _get_width_and_height(img):
|
79 |
+
if img.ndim == 2:
|
80 |
+
h, w = img.shape
|
81 |
+
else:
|
82 |
+
h, w, _ = img.shape
|
83 |
+
return w, h
|
84 |
+
|
85 |
+
|
86 |
+
def _get_resolution(img):
|
87 |
+
w, h = _get_width_and_height(img)
|
88 |
+
res = w * h
|
89 |
+
return res
|
90 |
+
|
91 |
+
|
92 |
+
def _to_pil(img):
|
93 |
+
if not isinstance(img, Image.Image):
|
94 |
+
img = Image.fromarray(img, mode="RGB")
|
95 |
+
return img
|
96 |
+
|
97 |
+
|
98 |
+
def _to_array(img):
|
99 |
+
img = np.array(img)
|
100 |
+
return img
|
101 |
+
|
102 |
+
|
103 |
+
def _bool_to_uint8(img):
|
104 |
+
uint8 = img.astype("uint8")
|
105 |
+
if (
|
106 |
+
np.array_equal(np.unique(uint8), np.array([0, 1]))
|
107 |
+
or np.array_equal(np.unique(uint8), np.array([0]))
|
108 |
+
or np.array_equal(np.unique(uint8), np.array([1]))
|
109 |
+
):
|
110 |
+
return uint8 * 255
|
111 |
+
else:
|
112 |
+
return uint8
|
113 |
+
|
114 |
+
|
115 |
+
def _figure_to_array(fig):
|
116 |
+
arr = mplfig_to_npimage(fig)
|
117 |
+
return arr
|
118 |
+
|
119 |
+
|
120 |
+
def _preprocess_image(img):
|
121 |
+
if img.dtype == "int32":
|
122 |
+
img = _repaint_segmentation_map(img)
|
123 |
+
|
124 |
+
if img.dtype == "bool":
|
125 |
+
img = img.astype("uint8") * 255
|
126 |
+
|
127 |
+
if img.ndim == 2:
|
128 |
+
if (
|
129 |
+
np.array_equal(np.unique(img), np.array([0, 255]))
|
130 |
+
or np.array_equal(np.unique(img), np.array([0]))
|
131 |
+
or np.array_equal(np.unique(img), np.array([255]))
|
132 |
+
):
|
133 |
+
img = _to_3d(img)
|
134 |
+
else:
|
135 |
+
img = _apply_jet_colormap(img)
|
136 |
+
return img
|
137 |
+
|
138 |
+
|
139 |
+
def _blend_two_images(img1, img2, alpha=0.5):
|
140 |
+
img1 = _to_pil(img1)
|
141 |
+
img2 = _to_pil(img2)
|
142 |
+
img_blended = Image.blend(im1=img1, im2=img2, alpha=alpha)
|
143 |
+
return _to_array(img_blended)
|
144 |
+
|
145 |
+
|
146 |
+
def _repaint_segmentation_map(seg_map):
|
147 |
+
canvas_r = _get_canvas_same_size_as_image(seg_map, black=True)
|
148 |
+
canvas_g = _get_canvas_same_size_as_image(seg_map, black=True)
|
149 |
+
canvas_b = _get_canvas_same_size_as_image(seg_map, black=True)
|
150 |
+
|
151 |
+
remainder_map = seg_map % len(COLORS) + 1
|
152 |
+
for remainder, (r, g, b) in enumerate(COLORS, start=1):
|
153 |
+
canvas_r[remainder_map == remainder] = r
|
154 |
+
canvas_g[remainder_map == remainder] = g
|
155 |
+
canvas_b[remainder_map == remainder] = b
|
156 |
+
canvas_r[seg_map == 0] = 0
|
157 |
+
canvas_g[seg_map == 0] = 0
|
158 |
+
canvas_b[seg_map == 0] = 0
|
159 |
+
|
160 |
+
dstacked = np.dstack([canvas_r, canvas_g, canvas_b])
|
161 |
+
return dstacked
|
162 |
+
|
163 |
+
|
164 |
+
def _get_canvas_same_size_as_image(img, black=False):
|
165 |
+
if black:
|
166 |
+
return np.zeros_like(img).astype("uint8")
|
167 |
+
else:
|
168 |
+
return (np.ones_like(img) * 255).astype("uint8")
|
169 |
+
|
170 |
+
|
171 |
+
def _get_canvas(w, h, black=False):
|
172 |
+
if black:
|
173 |
+
return np.zeros((h, w, 3)).astype("uint8")
|
174 |
+
else:
|
175 |
+
return (np.ones((h, w, 3)) * 255).astype("uint8")
|
176 |
+
|
177 |
+
|
178 |
+
def _invert_image(mask):
|
179 |
+
return cv2.bitwise_not(mask.astype("uint8"))
|
180 |
+
|
181 |
+
|
182 |
+
def _to_grayscale(img):
|
183 |
+
gray_img = cv2.cvtColor(src=img, code=cv2.COLOR_RGB2GRAY)
|
184 |
+
return gray_img
|
185 |
+
|
186 |
+
|
187 |
+
def _erode_mask(mask, kernel_size=3):
|
188 |
+
kernel = cv2.getStructuringElement(
|
189 |
+
shape=cv2.MORPH_RECT, ksize=(kernel_size, kernel_size)
|
190 |
+
)
|
191 |
+
if mask.dtype == "bool":
|
192 |
+
mask = mask.astype("uint8") * 255
|
193 |
+
mask = cv2.erode(src=mask, kernel=kernel)
|
194 |
+
return mask
|
195 |
+
|
196 |
+
|
197 |
+
def _dilate_mask(mask, kernel_size=3):
|
198 |
+
if kernel_size == 0:
|
199 |
+
return mask
|
200 |
+
kernel = cv2.getStructuringElement(
|
201 |
+
shape=cv2.MORPH_RECT, ksize=(kernel_size, kernel_size)
|
202 |
+
)
|
203 |
+
if mask.dtype == "bool":
|
204 |
+
mask = mask.astype("uint8") * 255
|
205 |
+
mask = cv2.dilate(src=mask, kernel=kernel)
|
206 |
+
return mask
|
207 |
+
|
208 |
+
|
209 |
+
def _gaussian_blur_mask(mask, kernel_size=5):
|
210 |
+
blurred_mask = cv2.GaussianBlur(
|
211 |
+
src=mask, ksize=(kernel_size, kernel_size), sigmaX=0
|
212 |
+
)
|
213 |
+
# mask = (blurred_mask >= 32).astype("uint8") * 255
|
214 |
+
mask = (blurred_mask != 0).astype("uint8") * 255
|
215 |
+
return mask
|
216 |
+
|
217 |
+
|
218 |
+
def _blur(img, v=0.04):
|
219 |
+
w, h = _get_width_and_height(img)
|
220 |
+
kernel_size = round(min(w, h) * v)
|
221 |
+
bl = cv2.GaussianBlur(
|
222 |
+
src=img.copy(order="C"),
|
223 |
+
ksize=(kernel_size // 2 * 2 + 1, kernel_size // 2 * 2 + 1),
|
224 |
+
sigmaX=0,
|
225 |
+
)
|
226 |
+
return bl
|
227 |
+
|
228 |
+
|
229 |
+
def _get_adaptive_thresholded_image(img, invert=False, block_size=3):
|
230 |
+
gray_img = cv2.cvtColor(src=img, code=cv2.COLOR_RGB2GRAY)
|
231 |
+
|
232 |
+
thrsh_type = cv2.THRESH_BINARY if not invert else cv2.THRESH_BINARY_INV
|
233 |
+
img_thr = cv2.adaptiveThreshold(
|
234 |
+
src=gray_img,
|
235 |
+
maxValue=255,
|
236 |
+
adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C,
|
237 |
+
thresholdType=thrsh_type,
|
238 |
+
blockSize=block_size,
|
239 |
+
C=0,
|
240 |
+
)
|
241 |
+
return img_thr
|
242 |
+
|
243 |
+
|
244 |
+
def _make_segmentation_map_rectangle(seg_map):
|
245 |
+
seg_map_copied = seg_map.copy(order="C")
|
246 |
+
for idx in range(1, np.max(seg_map_copied) + 1):
|
247 |
+
seg_map_sub = seg_map_copied == idx
|
248 |
+
nonzero_x = np.where((seg_map_sub != 0).any(axis=0))[0]
|
249 |
+
nonzero_y = np.where((seg_map_sub != 0).any(axis=1))[0]
|
250 |
+
if nonzero_x.size != 0 and nonzero_y.size != 0:
|
251 |
+
seg_map_copied[
|
252 |
+
nonzero_y[0] : nonzero_y[-1], nonzero_x[0] : nonzero_x[-1]
|
253 |
+
] = idx
|
254 |
+
return seg_map_copied
|
255 |
+
|
256 |
+
|
257 |
+
def _apply_jet_colormap(img):
|
258 |
+
img_jet = cv2.applyColorMap(src=(255 - img), colormap=cv2.COLORMAP_JET)
|
259 |
+
return img_jet
|
260 |
+
|
261 |
+
|
262 |
+
def _reverse_jet_colormap(img):
|
263 |
+
gray_values = np.arange(256, dtype=np.uint8)
|
264 |
+
color_values = list(map(tuple, _apply_jet_colormap(gray_values).reshape(256, 3)))
|
265 |
+
color_to_gray_map = dict(zip(color_values, gray_values))
|
266 |
+
|
267 |
+
out = np.apply_along_axis(
|
268 |
+
lambda bgr: color_to_gray_map[tuple(bgr)], axis=2, arr=img
|
269 |
+
)
|
270 |
+
return out
|
271 |
+
|
272 |
+
|
273 |
+
def _get_pixel_counts(arr, sort=False, include_zero=False):
|
274 |
+
unique, cnts = np.unique(arr, return_counts=True)
|
275 |
+
idx2cnt = dict(zip(unique, cnts))
|
276 |
+
|
277 |
+
if not include_zero:
|
278 |
+
if 0 in idx2cnt:
|
279 |
+
idx2cnt.pop(0)
|
280 |
+
|
281 |
+
if not sort:
|
282 |
+
return idx2cnt
|
283 |
+
else:
|
284 |
+
return dict(sorted(idx2cnt.items(), key=lambda x: x[1], reverse=True))
|
285 |
+
|
286 |
+
|
287 |
+
def _combine_masks(masks):
|
288 |
+
canvas = _get_canvas_same_size_as_image(img=masks[0], black=True)
|
289 |
+
for mask in masks:
|
290 |
+
canvas = np.maximum(_to_3d(canvas), _to_3d(mask))
|
291 |
+
return canvas
|
292 |
+
|
293 |
+
|
294 |
+
def _get_local_maxima_coordinates(region_score_map, region_seg_map=None, th=150):
|
295 |
+
# `src_lang="ja"`μΌ λ `150`μ΄ λ μ μλν¨.
|
296 |
+
if region_seg_map is None:
|
297 |
+
_, region_mask = cv2.threshold(
|
298 |
+
src=region_score_map, thresh=th, maxval=255, type=cv2.THRESH_BINARY
|
299 |
+
)
|
300 |
+
_, region_seg_map = cv2.connectedComponents(image=region_mask, connectivity=4)
|
301 |
+
local_max = peak_local_max(
|
302 |
+
image=region_score_map,
|
303 |
+
min_distance=5,
|
304 |
+
labels=region_seg_map,
|
305 |
+
num_peaks_per_label=24,
|
306 |
+
)
|
307 |
+
local_max = local_max[:, ::-1] # yx to xy
|
308 |
+
return local_max
|
309 |
+
|
310 |
+
|
311 |
+
def _get_local_maxima_array(region_score_map, region_seg_map=None, th=150):
|
312 |
+
local_max_coor = _get_local_maxima_coordinates(
|
313 |
+
region_score_map, region_seg_map=None, th=th
|
314 |
+
)
|
315 |
+
|
316 |
+
_, h = _get_width_and_height(local_max_coor)
|
317 |
+
vals = np.array([1] * h)
|
318 |
+
rows = local_max_coor[:, 1]
|
319 |
+
cols = local_max_coor[:, 0]
|
320 |
+
local_max = (
|
321 |
+
coo_matrix((vals, (rows, cols)), shape=region_score_map.shape)
|
322 |
+
.toarray()
|
323 |
+
.astype("bool")
|
324 |
+
)
|
325 |
+
return local_max
|
326 |
+
|
327 |
+
|
328 |
+
def _mask_image(img, mask, invert=False):
|
329 |
+
"""imgμμ mask μμμ ν΄λΉνλ λΆλΆλ§ μΆμΆ
|
330 |
+
|
331 |
+
Args:
|
332 |
+
img (_PIL or np.ndarray_): μ΄λ―Έμ§
|
333 |
+
mask (_PIL or np.ndarray_): λ§μ€ν¬ (H,W,C)μΌκ²½μ° νλ°±μΌλ‘ λ³ν ν or (H,W)
|
334 |
+
invert (bool, optional): invert_maskλ‘ μΆμΆν μ§.
|
335 |
+
|
336 |
+
Returns:
|
337 |
+
_np.ndarray_: κ²°κ³Ό μ΄λ―Έμ§
|
338 |
+
"""
|
339 |
+
img = _to_array(img)
|
340 |
+
mask = _to_2d(_to_array(mask))
|
341 |
+
if invert:
|
342 |
+
mask = _invert_image(mask)
|
343 |
+
return cv2.bitwise_and(src1=img, src2=img, mask=mask.astype("uint8"))
|
344 |
+
|
345 |
+
|
346 |
+
def _ignore_small_regions_in_mask(mask, area_thresh=10):
|
347 |
+
mask = _to_2d(mask)
|
348 |
+
|
349 |
+
_, seg_map, stats, _ = cv2.connectedComponentsWithStats(
|
350 |
+
mask.astype("uint8"), connectivity=4
|
351 |
+
)
|
352 |
+
bool = np.isin(seg_map, np.where(stats[:, cv2.CC_STAT_AREA] >= area_thresh)[0][1:])
|
353 |
+
new_mask = bool.astype("uint8") * 255
|
354 |
+
new_mask = _to_3d(new_mask)
|
355 |
+
return new_mask
|
356 |
+
|
357 |
+
|
358 |
+
def _crop_image(img, l, t, r, b):
|
359 |
+
w, h = _get_width_and_height(img)
|
360 |
+
return img[
|
361 |
+
int(max(0, t)) : int(min(h, b)),
|
362 |
+
int(max(0, l)) : int(min(w, r)),
|
363 |
+
...,
|
364 |
+
]
|
365 |
+
|
366 |
+
|
367 |
+
def _bboxes_to_mask(img, bboxes):
|
368 |
+
canvas = _get_canvas_same_size_as_image(img=img, black=True)
|
369 |
+
for row in bboxes.itertuples():
|
370 |
+
canvas[row.bbox_y1 : row.bbox_y2, row.bbox_x1 : row.bbox_x2] = 255
|
371 |
+
return _to_3d(canvas)
|
372 |
+
|
373 |
+
|
374 |
+
def _apply_watershed(mask, region_score_map, th=150):
|
375 |
+
local_max_arr = _get_local_maxima_array(region_score_map, th=th)
|
376 |
+
_, markers = cv2.connectedComponents(
|
377 |
+
image=local_max_arr.astype("uint8"), connectivity=4
|
378 |
+
)
|
379 |
+
seg_map = watershed(image=-region_score_map, markers=markers, mask=_to_2d(mask))
|
380 |
+
return seg_map
|
381 |
+
|
382 |
+
|
383 |
+
def _perform_watershed(score_map, score_thresh=80):
|
384 |
+
trimmed_score_map = score_map.copy()
|
385 |
+
trimmed_score_map[trimmed_score_map < 190] = 0
|
386 |
+
|
387 |
+
markers = local_maxima(image=trimmed_score_map, allow_borders=False)
|
388 |
+
_, markers = cv2.connectedComponents(image=markers.astype("int8"), connectivity=8)
|
389 |
+
|
390 |
+
_, region_mask = cv2.threshold(
|
391 |
+
src=score_map, thresh=score_thresh, maxval=255, type=cv2.THRESH_BINARY
|
392 |
+
)
|
393 |
+
watersheded = watershed(image=-score_map, markers=markers, mask=_to_2d(region_mask))
|
394 |
+
return watersheded
|
395 |
+
|
396 |
+
|
397 |
+
def _get_region_segmentation_map(region_score_map, region_thresh=30):
|
398 |
+
_, region_mask = cv2.threshold(
|
399 |
+
src=region_score_map, thresh=region_thresh, maxval=255, type=cv2.THRESH_BINARY
|
400 |
+
)
|
401 |
+
region_seg_map = _apply_watershed(
|
402 |
+
region_score_map=region_score_map, mask=region_mask
|
403 |
+
)
|
404 |
+
return region_seg_map
|
405 |
+
|
406 |
+
|
407 |
+
def _combine_two_segmentation_maps(seg_map1, seg_map2):
|
408 |
+
seg_map = seg_map1 + _mask_image(
|
409 |
+
img=seg_map2 + len(np.unique(seg_map1)) - 1, mask=(seg_map2 != 0)
|
410 |
+
)
|
411 |
+
px_cnts = _get_pixel_counts(seg_map, sort=True, include_zero=True)
|
412 |
+
seg_map = _mask_image(img=seg_map, mask=(seg_map != list(px_cnts)[0]))
|
413 |
+
return seg_map
|
414 |
+
|
415 |
+
|
416 |
+
def _get_image_segmentation_map(img, region_score_map=None, block_size=3):
|
417 |
+
if region_score_map is not None:
|
418 |
+
_, region_mask = cv2.threshold(
|
419 |
+
src=region_score_map, thresh=20, maxval=255, type=cv2.THRESH_BINARY
|
420 |
+
)
|
421 |
+
region_mask = _dilate_mask(img=region_mask, kernel_size=16)
|
422 |
+
img_masked = _mask_image(img=img, mask=region_mask)
|
423 |
+
else:
|
424 |
+
img_masked = img
|
425 |
+
|
426 |
+
img_thr1 = _get_adaptive_thresholded_image(
|
427 |
+
img=img_masked, invert=False, block_size=block_size
|
428 |
+
)
|
429 |
+
img_thr2 = _get_adaptive_thresholded_image(
|
430 |
+
img=img_masked, invert=True, block_size=block_size
|
431 |
+
)
|
432 |
+
|
433 |
+
_, seg_map1 = cv2.connectedComponents(image=img_thr1, connectivity=4)
|
434 |
+
_, seg_map2 = cv2.connectedComponents(image=img_thr2, connectivity=4)
|
435 |
+
seg_map = _combine_two_segmentation_maps(seg_map1=seg_map1, seg_map2=seg_map2)
|
436 |
+
return seg_map
|
437 |
+
|
438 |
+
|
439 |
+
def _get_segmentation_map_overlapping_mask(seg_map, mask, overlap_thresh=0.6):
|
440 |
+
img_pixel_counts = _get_pixel_counts(seg_map, sort=True, include_zero=False)
|
441 |
+
|
442 |
+
overlapping_seg_map = _mask_image(img=seg_map, mask=(mask != 0))
|
443 |
+
overlapping_counts = _get_pixel_counts(
|
444 |
+
overlapping_seg_map, sort=False, include_zero=False
|
445 |
+
)
|
446 |
+
|
447 |
+
df_counts = pd.DataFrame.from_dict(
|
448 |
+
img_pixel_counts, orient="index", columns=["total_pixel_count"]
|
449 |
+
)
|
450 |
+
df_counts["overlap_pixel_count"] = df_counts.apply(
|
451 |
+
lambda x: overlapping_counts.get(x.name, 0), axis=1
|
452 |
+
)
|
453 |
+
df_counts["ratio"] = (
|
454 |
+
df_counts["overlap_pixel_count"] / df_counts["total_pixel_count"]
|
455 |
+
)
|
456 |
+
|
457 |
+
region_is_inside = df_counts[df_counts["ratio"] > overlap_thresh].index.tolist()
|
458 |
+
mask = np.isin(seg_map, region_is_inside).astype("uint8")
|
459 |
+
mask = _to_3d(mask * 255)
|
460 |
+
return mask
|
461 |
+
|
462 |
+
|
463 |
+
def _split_segmentation_map(seg_map, pccs):
|
464 |
+
ls_idx = (
|
465 |
+
pccs[pccs["inside"]]
|
466 |
+
.apply(lambda x: seg_map[x["y"], x["x"]], axis=1)
|
467 |
+
.values.tolist()
|
468 |
+
)
|
469 |
+
|
470 |
+
seg_map1 = _mask_image(img=seg_map, mask=np.isin(seg_map, ls_idx))
|
471 |
+
seg_map2 = _mask_image(img=seg_map, mask=~np.isin(seg_map, ls_idx))
|
472 |
+
return seg_map1, seg_map2
|
473 |
+
|
474 |
+
|
475 |
+
def _segmentation_map_to_mask(seg_map):
|
476 |
+
return _to_3d((seg_map != 0).astype("uint8") * 255)
|
477 |
+
|
478 |
+
|
479 |
+
def _get_pseudo_character_centers_from_mask(mask, bboxes: pd.DataFrame = None):
|
480 |
+
"""Mask μ΄λ―Έμ§λ‘λΆν° label(κΈμ)μ μ€μ¬ μ’νλ₯Ό ꡬνλ ν¨μ"""
|
481 |
+
center_coords = []
|
482 |
+
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(
|
483 |
+
image=_to_2d(mask), connectivity=8
|
484 |
+
)
|
485 |
+
for i in range(1, num_labels):
|
486 |
+
center_coords.append((int(centroids[i][0]), int(centroids[i][1])))
|
487 |
+
|
488 |
+
pccs = pd.DataFrame(
|
489 |
+
center_coords,
|
490 |
+
columns=[
|
491 |
+
"x",
|
492 |
+
"y",
|
493 |
+
],
|
494 |
+
)
|
495 |
+
|
496 |
+
if not bboxes.empty:
|
497 |
+
# 벑ν°ν μ°μ°μΌλ‘ bbox μμ μλμ§ κ²μ¬
|
498 |
+
pccs["inside"] = (
|
499 |
+
(pccs["x"].values[:, None] > bboxes["bbox_x1"].values) &
|
500 |
+
(pccs["x"].values[:, None] < bboxes["bbox_x2"].values) &
|
501 |
+
(pccs["y"].values[:, None] > bboxes["bbox_y1"].values) &
|
502 |
+
(pccs["y"].values[:, None] < bboxes["bbox_y2"].values)
|
503 |
+
).any(axis=1)
|
504 |
+
else:
|
505 |
+
pccs["inside"] = True
|
506 |
+
|
507 |
+
return pccs
|
508 |
+
|
509 |
+
|
510 |
+
def _get_pseudo_character_centers(
|
511 |
+
region_score_map, region_seg_map=None, bboxes=pd.DataFrame()
|
512 |
+
):
|
513 |
+
local_max_coor = _get_local_maxima_coordinates(
|
514 |
+
region_score_map, region_seg_map=region_seg_map
|
515 |
+
)
|
516 |
+
pccs = pd.DataFrame(local_max_coor, columns=["x", "y"])
|
517 |
+
|
518 |
+
if not bboxes.empty:
|
519 |
+
# 벑ν°ν μ°μ°μΌλ‘ bbox μμ μλμ§ κ²μ¬
|
520 |
+
pccs["inside"] = (
|
521 |
+
(pccs["x"].values[:, None] > bboxes["bbox_x1"].values) &
|
522 |
+
(pccs["x"].values[:, None] < bboxes["bbox_x2"].values) &
|
523 |
+
(pccs["y"].values[:, None] > bboxes["bbox_y1"].values) &
|
524 |
+
(pccs["y"].values[:, None] < bboxes["bbox_y2"].values)
|
525 |
+
).any(axis=1)
|
526 |
+
else:
|
527 |
+
pccs["inside"] = True
|
528 |
+
|
529 |
+
return pccs
|
530 |
+
|
531 |
+
|
532 |
+
def _convert_region_score_map_to_region_mask(region_score_map, region_score_thresh=170):
|
533 |
+
_, region_mask = cv2.threshold(
|
534 |
+
src=region_score_map, thresh=30, maxval=255, type=cv2.THRESH_BINARY
|
535 |
+
)
|
536 |
+
|
537 |
+
new_mask = _get_canvas_same_size_as_image(img=region_mask, black=True)
|
538 |
+
|
539 |
+
n_labels, seg_map, _, _ = cv2.connectedComponentsWithStats(
|
540 |
+
image=_to_2d(region_mask), connectivity=4
|
541 |
+
)
|
542 |
+
for k in range(1, n_labels):
|
543 |
+
if np.max(region_score_map[seg_map == k]) < region_score_thresh:
|
544 |
+
continue
|
545 |
+
|
546 |
+
new_mask[seg_map == k] = 255
|
547 |
+
new_mask = _to_3d(new_mask)
|
548 |
+
return new_mask
|
549 |
+
|
550 |
+
|
551 |
+
def _split_mask(mask, region_score_map=None, bboxes=pd.DataFrame(), th=30):
|
552 |
+
"""maskλ₯Ό λ μ’
λ₯λ‘ λλλλ€. κ°κ° inpaintingκ³Όμ μμ μ§μμΌν maskμ 볡ꡬν΄μΌν mask μμμ μλ―Έν©λλ€.
|
553 |
+
mask1κ³Ό mask2λ μλ‘ κ²ΉμΉ μλ μμ΅λλ€.
|
554 |
+
λμμ리 : region_score_map(μ΄ μμ£Όμ΄μ§ κ²½μ° dst_mask_map)μ thλ‘ μ΄μ§ν λ° segmapμΌλ‘ λ³ν(Connected components)ν
|
555 |
+
labelμμ λ³ Local maximum ν¬μΈνΈλ₯Ό watershedμ markerλ‘ μ¬κ²¨ watershedλ₯Ό μ§νν κ²°κ³Όλ₯Ό segmapμΌλ‘ μ¬κΈ°κ³ ,
|
556 |
+
pccsλ₯Ό peak_loacl_max(skimage)ν¨μλ‘ region_scoremapκ³Ό segmapμ μ΄μ©ν΄ ꡬνλ€. μ΄λ bboxμ 보λ ν¬ν¨μμΌ, κ° pccsκ° boxμμ λ€μ΄ μ€λμ§ νμΈν ν
|
557 |
+
bboxμμ μλ pccsμ λν΄ κ° pccsκ° μν segmapμ labelμμ(seg_map1)κ³Ό μνμ§ λͺ»ν label μμ(seg_map2)λ‘ λλλ€.
|
558 |
+
|
559 |
+
Args:
|
560 |
+
mask (_np.ndarray_): (H,W,3)μ mask. values : (0 or 255)
|
561 |
+
region_score_map (_np.ndarray_): region_score_map, craftμ κ²°κ³Ό. κΈμ μ€μ¬μ κ°μ‘°νλ Heat map
|
562 |
+
bboxes (_pd.DataFrame_): λ°μ€ μ’νμ 보(bbox_x1,bbox_y1,bbox_x2,bbox_y2)κ° ν¬ν¨λ dataFrame.
|
563 |
+
Returns:
|
564 |
+
_np.ndarray_: μ§μμΌ νλ λΆλΆμΈ mask1. 볡ꡬν΄μΌ νλ λΆλΆμΈ mask2.
|
565 |
+
"""
|
566 |
+
|
567 |
+
if region_score_map is None:
|
568 |
+
dst_mask_map = _to_2d(get_dst_mask(mask))
|
569 |
+
seg_map = _apply_watershed(mask=mask, region_score_map=dst_mask_map, th=th)
|
570 |
+
pccs = _get_pseudo_character_centers(
|
571 |
+
region_score_map=dst_mask_map, region_seg_map=seg_map, bboxes=bboxes
|
572 |
+
)
|
573 |
+
else:
|
574 |
+
seg_map = _apply_watershed(mask, region_score_map, th=th)
|
575 |
+
pccs = _get_pseudo_character_centers(
|
576 |
+
region_score_map=region_score_map, region_seg_map=seg_map, bboxes=bboxes
|
577 |
+
)
|
578 |
+
|
579 |
+
box_mask = _bboxes_to_mask(seg_map, bboxes)
|
580 |
+
|
581 |
+
seg_map1, seg_map2 = _split_segmentation_map(seg_map=seg_map, pccs=pccs)
|
582 |
+
mask1 = _segmentation_map_to_mask(seg_map1)
|
583 |
+
mask2 = _segmentation_map_to_mask(seg_map2)
|
584 |
+
mask3 = _to_3d(_mask_image(mask1, box_mask, invert=True))
|
585 |
+
mask2 = _combine_masks([mask2, mask3])
|
586 |
+
return mask1, mask2
|
587 |
+
|
588 |
+
|
589 |
+
def get_word_segmentation_map(region_score_map, affinity_score_map):
|
590 |
+
_, region_mask = cv2.threshold(
|
591 |
+
src=region_score_map, thresh=70, maxval=255, type=cv2.THRESH_BINARY
|
592 |
+
)
|
593 |
+
_, affinity_mask = cv2.threshold(
|
594 |
+
src=affinity_score_map, thresh=70, maxval=255, type=cv2.THRESH_BINARY
|
595 |
+
)
|
596 |
+
word_mask = region_mask + affinity_mask
|
597 |
+
|
598 |
+
_, segmentation_map_word = cv2.connectedComponents(image=word_mask, connectivity=4)
|
599 |
+
return segmentation_map_word
|
600 |
+
|
601 |
+
|
602 |
+
def get_line_segmentation_map(line_score_map):
|
603 |
+
_, line_mask = cv2.threshold(
|
604 |
+
src=line_score_map, thresh=130, maxval=255, type=cv2.THRESH_BINARY
|
605 |
+
)
|
606 |
+
_, line_segmentation_map = cv2.connectedComponents(image=line_mask, connectivity=4)
|
607 |
+
return line_segmentation_map
|
608 |
+
|
609 |
+
|
610 |
+
def _get_3d_block_segmentation_map(img, bboxes):
|
611 |
+
segmentation_map_block = np.zeros(
|
612 |
+
shape=(img.shape[0], img.shape[1], len(bboxes) + 1)
|
613 |
+
)
|
614 |
+
for idx, (xmin, ymin, xmax, ymax) in enumerate(
|
615 |
+
bboxes[["xmin", "ymin", "xmax", "ymax"]].values, start=1
|
616 |
+
):
|
617 |
+
segmentation_map_block[ymin:ymax, xmin:xmax, idx] = 255
|
618 |
+
return segmentation_map_block
|
619 |
+
|
620 |
+
|
621 |
+
def compare_images(img1, img2, flag=cv2.CMP_EQ):
|
622 |
+
# λ μ΄λ―Έμ§κ° κ°μ μμμ 255 μλ μμμ 0. flagλ cv2.CMP_XXμ°Έκ³ (EQ==κ°μΌλ©΄1,NE==λ€λ₯΄λ©΄1)
|
623 |
+
return cv2.compare(img1, img2, flag)
|
624 |
+
|
625 |
+
|
626 |
+
def convert_webp_png_get_data(img: np.ndarray):
|
627 |
+
pil_img = _to_pil(img)
|
628 |
+
convert_pil_img = pil_img.convert("RGB")
|
629 |
+
convert_pil_img.save("temp.png")
|
630 |
+
_, byte, format = load_image("temp.png", with_byte=True, with_format=True)
|
631 |
+
os.remove("temp.png")
|
632 |
+
|
633 |
+
return byte
|
634 |
+
|
635 |
+
|
636 |
+
def add_water_mark(original_img, water_mark_img_path):
|
637 |
+
if isinstance(original_img, np.ndarray):
|
638 |
+
original_img = _to_pil(original_img)
|
639 |
+
return_np = True
|
640 |
+
else:
|
641 |
+
return_np = False
|
642 |
+
watermark = Image.open(water_mark_img_path).convert("RGBA")
|
643 |
+
|
644 |
+
width_o, height_o = original_img.size
|
645 |
+
width_wm, height_wm = watermark.size
|
646 |
+
|
647 |
+
position = ((width_o - width_wm) // 2, (height_o - height_wm) // 2)
|
648 |
+
|
649 |
+
# μλ³Έ μ΄λ―Έμ§λ³΄λ€ ν¬κΈ°κ° μμ κ²½μ°μλ§ μν°λ§ν¬ μ΄λ―Έμ§λ₯Ό λΉμ¨μ λ§κ² μ‘°μ
|
650 |
+
if width_wm > width_o or height_wm > height_o:
|
651 |
+
# μν°λ§ν¬ μ΄λ―Έμ§μ κ°λ‘ μΈλ‘ λΉμ¨ κ³μ°
|
652 |
+
ratio_w = width_o / width_wm
|
653 |
+
ratio_h = height_o / height_wm
|
654 |
+
# λ μμ λΉμ¨μ μ ννμ¬ μν°λ§ν¬ μ΄λ―Έμ§λ₯Ό μ‘°μ
|
655 |
+
ratio = min(ratio_w, ratio_h)
|
656 |
+
new_width = int(width_wm * ratio)
|
657 |
+
new_height = int(height_wm * ratio)
|
658 |
+
watermark = watermark.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
659 |
+
width_wm, height_wm = watermark.size
|
660 |
+
|
661 |
+
# μλ‘ κ³μ°λ μμΉ
|
662 |
+
position = ((width_o - width_wm) // 2, (height_o - height_wm) // 2)
|
663 |
+
|
664 |
+
original_img.paste(watermark, position, watermark)
|
665 |
+
rgb_image = original_img.convert("RGB")
|
666 |
+
|
667 |
+
if return_np:
|
668 |
+
return _to_array(rgb_image)
|
669 |
+
return rgb_image
|
670 |
+
|
671 |
+
|
672 |
+
def load_image(url_or_path, with_byte=False, with_format=False):
|
673 |
+
if "http" in url_or_path:
|
674 |
+
url_or_path = str(url_or_path)
|
675 |
+
response = requests.get(url_or_path)
|
676 |
+
PIL_image = Image.open(io.BytesIO(response.content))
|
677 |
+
format = PIL_image.format
|
678 |
+
image_bytes = response.content
|
679 |
+
if format == "GIF":
|
680 |
+
img_exif = None
|
681 |
+
else:
|
682 |
+
img_exif = PIL_image._getexif()
|
683 |
+
if PIL_image.mode in ["L", "P", "PA", "RGBA"]:
|
684 |
+
PIL_image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
685 |
+
if img_exif:
|
686 |
+
for k in img_exif.keys():
|
687 |
+
attr = ExifTags.TAGS.get(k, "no_key")
|
688 |
+
if attr != "no_key":
|
689 |
+
if ExifTags.TAGS[k] == "Orientation":
|
690 |
+
if img_exif[k] == 3:
|
691 |
+
PIL_image = PIL_image.rotate(180, expand=True)
|
692 |
+
elif img_exif[k] == 6:
|
693 |
+
PIL_image = PIL_image.rotate(270, expand=True)
|
694 |
+
elif img_exif[k] == 8:
|
695 |
+
PIL_image = PIL_image.rotate(90, expand=True)
|
696 |
+
break
|
697 |
+
if PIL_image.mode == "CMYK":
|
698 |
+
cmyk_profile = ImageCms.ImageCmsProfile("resources/USWebCoatedSWOP.icc")
|
699 |
+
srgb_profile = ImageCms.ImageCmsProfile(
|
700 |
+
"resources/sRGB Color Space Profile.icm"
|
701 |
+
)
|
702 |
+
PIL_image = ImageCms.profileToProfile(
|
703 |
+
PIL_image, cmyk_profile, srgb_profile, outputMode="RGB"
|
704 |
+
)
|
705 |
+
img = np.array(PIL_image)
|
706 |
+
else:
|
707 |
+
img = np.array(PIL_image)
|
708 |
+
else:
|
709 |
+
# img = cv2.imread(url_or_path, flags=cv2.IMREAD_COLOR)
|
710 |
+
# img = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2RGB)
|
711 |
+
PIL_image = Image.open(url_or_path)
|
712 |
+
format = PIL_image.format
|
713 |
+
byte_arr = io.BytesIO()
|
714 |
+
if PIL_image.mode == "RGBA":
|
715 |
+
PIL_image = PIL_image.convert("RGB")
|
716 |
+
PIL_image.save(byte_arr, format="JPEG")
|
717 |
+
image_bytes = byte_arr.getvalue()
|
718 |
+
img = np.array(PIL_image)
|
719 |
+
|
720 |
+
# if "http" in url_or_path:
|
721 |
+
# img = cv2.imdecode(
|
722 |
+
# np.asarray(bytearray(requests.get(url_or_path).content), dtype="uint8"), flags=cv2.IMREAD_COLOR
|
723 |
+
# )
|
724 |
+
# else:
|
725 |
+
# img = cv2.imread(url_or_path, flags=cv2.IMREAD_COLOR)
|
726 |
+
# img = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2RGB)
|
727 |
+
if with_byte:
|
728 |
+
if with_format:
|
729 |
+
return img, image_bytes, format
|
730 |
+
else:
|
731 |
+
return img, image_bytes
|
732 |
+
|
733 |
+
return img
|
734 |
+
|
735 |
+
|
736 |
+
def save_image(img1, img2=None, alpha=0.5, path="") -> None:
|
737 |
+
copied_img1 = _preprocess_image(_to_array(img1.copy(order="C")))
|
738 |
+
if img2 is None:
|
739 |
+
img_arr = copied_img1
|
740 |
+
else:
|
741 |
+
copied_img2 = _to_array(_preprocess_image(_to_array(img2.copy(order="C"))))
|
742 |
+
img_arr = _to_array(
|
743 |
+
_blend_two_images(img1=copied_img1, img2=copied_img2, alpha=alpha)
|
744 |
+
)
|
745 |
+
|
746 |
+
path = Path(path)
|
747 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
748 |
+
|
749 |
+
if os.path.splitext(str(path))[1] == ".gif":
|
750 |
+
pil = _to_pil(img1)
|
751 |
+
pil.save(str(path))
|
752 |
+
return True
|
753 |
+
|
754 |
+
if img_arr.ndim == 3:
|
755 |
+
cv2.imwrite(
|
756 |
+
filename=str(path),
|
757 |
+
img=img_arr[:, :, ::-1],
|
758 |
+
params=[cv2.IMWRITE_JPEG_QUALITY, 100],
|
759 |
+
)
|
760 |
+
elif img_arr.ndim == 2:
|
761 |
+
cv2.imwrite(
|
762 |
+
filename=str(path), img=img_arr, params=[cv2.IMWRITE_JPEG_QUALITY, 100]
|
763 |
+
)
|
764 |
+
|
765 |
+
|
766 |
+
def show_image(img1, img2=None, alpha=0.5):
|
767 |
+
img1 = _to_pil(_preprocess_image(_to_array(img1)))
|
768 |
+
if img2 is None:
|
769 |
+
img1.show()
|
770 |
+
else:
|
771 |
+
img2 = _to_pil(_preprocess_image(_to_array(img2)))
|
772 |
+
img_blended = Image.blend(im1=img1, im2=img2, alpha=alpha)
|
773 |
+
img_blended.show()
|
774 |
+
|
775 |
+
|
776 |
+
def draw_bboxes(img, bboxes: pd.DataFrame, index=False):
|
777 |
+
"""μμ±μΆμΆμ μλ³Έ μ΄λ―Έμ§μ bboxesμ 보λ₯Ό κ°μ§κ³ μ΄λ―Έμ§μμ bboxesλ₯Ό μκ°ν ν΄μ£Όλ ν¨μ."""
|
778 |
+
canvas = _to_pil(_get_canvas_same_size_as_image(img=img, black=True))
|
779 |
+
draw = ImageDraw.Draw(canvas)
|
780 |
+
dic = dict()
|
781 |
+
for row in bboxes.itertuples():
|
782 |
+
h = row.bbox_y2 - row.bbox_y1
|
783 |
+
w = row.bbox_x2 - row.bbox_x1
|
784 |
+
smaller = min(w, h)
|
785 |
+
thickness = max(1, smaller // 22)
|
786 |
+
|
787 |
+
dic[row.Index] = ((0, 255, 0), (0, 100, 0), thickness)
|
788 |
+
|
789 |
+
for row in bboxes.itertuples():
|
790 |
+
_, fill, thickness = dic[row.Index]
|
791 |
+
draw.rectangle(
|
792 |
+
xy=(row.bbox_x1, row.bbox_y1, row.bbox_x2, row.bbox_y2),
|
793 |
+
outline=None,
|
794 |
+
fill=fill,
|
795 |
+
width=thickness,
|
796 |
+
)
|
797 |
+
for row in bboxes.itertuples():
|
798 |
+
outline, _, thickness = dic[row.Index]
|
799 |
+
draw.rectangle(
|
800 |
+
xy=(row.bbox_x1, row.bbox_y1, row.bbox_x2, row.bbox_y2),
|
801 |
+
outline=outline,
|
802 |
+
fill=None,
|
803 |
+
width=thickness,
|
804 |
+
)
|
805 |
+
|
806 |
+
if index:
|
807 |
+
from data_utils.rendering_utils import _get_font
|
808 |
+
|
809 |
+
max_len = max(map(len, map(str, bboxes.index)))
|
810 |
+
for row in bboxes.itertuples():
|
811 |
+
h = row.bbox_y2 - row.bbox_y1
|
812 |
+
w = row.bbox_x2 - row.bbox_x1
|
813 |
+
smaller = min(w, h)
|
814 |
+
font_size = max(10, min(40, smaller // 4))
|
815 |
+
|
816 |
+
draw.text(
|
817 |
+
xy=(row.bbox_x1, row.bbox_y1 - 4),
|
818 |
+
text=str(row.Index).zfill(max_len),
|
819 |
+
fill="white",
|
820 |
+
stroke_fill="black",
|
821 |
+
stroke_width=2,
|
822 |
+
font=_get_font(lang="en", font_size=font_size),
|
823 |
+
anchor="ls",
|
824 |
+
)
|
825 |
+
return _blend_two_images(img1=canvas, img2=img, alpha=0.4)
|
826 |
+
|
827 |
+
|
828 |
+
def visualize_clusters(img, bboxes, index=False):
|
829 |
+
from data_utils.rendering_utils import _get_font
|
830 |
+
|
831 |
+
canvas = _to_pil(_get_canvas_same_size_as_image(img=img, black=True))
|
832 |
+
draw = ImageDraw.Draw(canvas)
|
833 |
+
dic = dict()
|
834 |
+
for row in bboxes.itertuples():
|
835 |
+
h = row.bbox_y2 - row.bbox_y1
|
836 |
+
w = row.bbox_x2 - row.bbox_x1
|
837 |
+
smaller = min(w, h)
|
838 |
+
thickness = max(1, smaller // 22)
|
839 |
+
|
840 |
+
dic[row.Index] = ((255, 255, 255), COLORS[row.cluster], thickness)
|
841 |
+
|
842 |
+
for row in bboxes.itertuples():
|
843 |
+
_, fill, thickness = dic[row.Index]
|
844 |
+
draw.rectangle(
|
845 |
+
xy=(row.bbox_x1, row.bbox_y1, row.bbox_x2, row.bbox_y2),
|
846 |
+
outline=None,
|
847 |
+
fill=fill,
|
848 |
+
width=1,
|
849 |
+
)
|
850 |
+
for row in bboxes.itertuples():
|
851 |
+
outline, _, thickness = dic[row.Index]
|
852 |
+
draw.rectangle(
|
853 |
+
xy=(row.bbox_x1, row.bbox_y1, row.bbox_x2, row.bbox_y2),
|
854 |
+
outline=outline,
|
855 |
+
fill=None,
|
856 |
+
width=1,
|
857 |
+
)
|
858 |
+
|
859 |
+
if index:
|
860 |
+
for row in bboxes.itertuples():
|
861 |
+
h = row.bbox_y2 - row.bbox_y1
|
862 |
+
w = row.bbox_x2 - row.bbox_x1
|
863 |
+
smaller = min(w, h)
|
864 |
+
font_size = max(14, min(40, smaller * 0.35))
|
865 |
+
|
866 |
+
draw.text(
|
867 |
+
xy=(row.bbox_x1, row.bbox_y1 - 4),
|
868 |
+
text=str(row.cluster),
|
869 |
+
fill="white",
|
870 |
+
stroke_fill="black",
|
871 |
+
stroke_width=2,
|
872 |
+
font=_get_font(lang="en", font_size=font_size),
|
873 |
+
anchor="ls",
|
874 |
+
)
|
875 |
+
return _blend_two_images(img1=canvas, img2=img, alpha=0.25)
|
876 |
+
|
877 |
+
|
878 |
+
def draw_bboxes_and_textboxes(bboxes, img):
|
879 |
+
canvas = img.copy(order="C")
|
880 |
+
for row in bboxes.itertuples():
|
881 |
+
cv2.rectangle(
|
882 |
+
img=canvas,
|
883 |
+
pt1=(row.bbox_x1, row.bbox_y1),
|
884 |
+
pt2=(row.bbox_x2, row.bbox_y2),
|
885 |
+
color=(0, 255, 0),
|
886 |
+
thickness=4,
|
887 |
+
)
|
888 |
+
cv2.rectangle(
|
889 |
+
img=canvas,
|
890 |
+
pt1=(row.tbox_x1, row.tbox_y1),
|
891 |
+
pt2=(row.tbox_x2, row.tbox_y2),
|
892 |
+
color=(255, 0, 0),
|
893 |
+
thickness=2,
|
894 |
+
)
|
895 |
+
return canvas
|
896 |
+
|
897 |
+
|
898 |
+
def draw_pseudo_character_centers(img, pccs, margin=4):
|
899 |
+
canvas = _to_pil(_get_canvas_same_size_as_image(img=img, black=True))
|
900 |
+
draw = ImageDraw.Draw(canvas)
|
901 |
+
for row in pccs.itertuples():
|
902 |
+
draw.ellipse(
|
903 |
+
xy=(row.x - margin, row.y - margin, row.x + margin, row.y + margin),
|
904 |
+
outline=(255, 0, 0),
|
905 |
+
fill=(100, 0, 0),
|
906 |
+
)
|
907 |
+
return _blend_two_images(img1=canvas, img2=img, alpha=0.3)
|
908 |
+
|
909 |
+
|
910 |
+
def _resize_image(img, w, h):
|
911 |
+
ori_w, ori_h = _get_width_and_height(img)
|
912 |
+
if w < ori_w or h < ori_h:
|
913 |
+
interpolation = cv2.INTER_AREA
|
914 |
+
else:
|
915 |
+
interpolation = cv2.INTER_LANCZOS4
|
916 |
+
resized_img = cv2.resize(src=img, dsize=(w, h), interpolation=interpolation)
|
917 |
+
return resized_img
|
918 |
+
|
919 |
+
|
920 |
+
def _resize_image_using_shorter_side(img, img_size=1530):
|
921 |
+
ori_w, ori_h = _get_width_and_height(img)
|
922 |
+
shorter = min(ori_w, ori_h)
|
923 |
+
if shorter <= img_size:
|
924 |
+
return img
|
925 |
+
if ori_w < ori_h:
|
926 |
+
resized_img = cv2.resize(
|
927 |
+
src=img,
|
928 |
+
dsize=(img_size, round(ori_h * (img_size / ori_w))),
|
929 |
+
interpolation=cv2.INTER_AREA,
|
930 |
+
)
|
931 |
+
else:
|
932 |
+
resized_img = cv2.resize(
|
933 |
+
src=img,
|
934 |
+
dsize=(round(ori_w * (img_size / ori_h)), img_size),
|
935 |
+
interpolation=cv2.INTER_AREA,
|
936 |
+
)
|
937 |
+
return resized_img
|
938 |
+
|
939 |
+
|
940 |
+
def _resize_image_using_longer_side(img, img_size=2560):
|
941 |
+
ori_w, ori_h = _get_width_and_height(img)
|
942 |
+
longer = max(ori_w, ori_h)
|
943 |
+
if longer <= img_size:
|
944 |
+
return img
|
945 |
+
if ori_w < ori_h:
|
946 |
+
resized_img = cv2.resize(
|
947 |
+
src=img,
|
948 |
+
dsize=(round(ori_w * (img_size / ori_h)), img_size),
|
949 |
+
interpolation=cv2.INTER_AREA,
|
950 |
+
)
|
951 |
+
else:
|
952 |
+
resized_img = cv2.resize(
|
953 |
+
src=img,
|
954 |
+
dsize=(img_size, round(ori_h * (img_size / ori_w))),
|
955 |
+
interpolation=cv2.INTER_AREA,
|
956 |
+
)
|
957 |
+
return resized_img
|
958 |
+
|
959 |
+
|
960 |
+
def _split_image_3(img, print=False):
|
961 |
+
if img.ndim == 2:
|
962 |
+
is_2d = True
|
963 |
+
else:
|
964 |
+
is_2d = False
|
965 |
+
|
966 |
+
img = _to_3d(img)
|
967 |
+
w, h = _get_width_and_height(img)
|
968 |
+
if h >= w:
|
969 |
+
if print:
|
970 |
+
print(f"Resolution: {w}, {h} -> {w}, {h // 2}")
|
971 |
+
img1 = img[: h // 2, :, :]
|
972 |
+
img2 = img[h // 4 : h // 4 + h // 2, :, :]
|
973 |
+
img3 = img[-h // 2 :, :, :]
|
974 |
+
else:
|
975 |
+
if print:
|
976 |
+
print(f"Resolution: {w}, {h} -> {w // 2}, {h}")
|
977 |
+
img1 = img[:, : w // 2, :]
|
978 |
+
img2 = img[:, w // 2 // 2 : w // 2 // 2 + w // 2, :]
|
979 |
+
img3 = img[:, -w // 2 :, :]
|
980 |
+
if is_2d:
|
981 |
+
img1 = _to_2d(img1)
|
982 |
+
img2 = _to_2d(img2)
|
983 |
+
img3 = _to_2d(img3)
|
984 |
+
return img1, img2, img3
|
985 |
+
|
986 |
+
|
987 |
+
def _split_image_2(img, print=False):
|
988 |
+
if img.ndim == 2:
|
989 |
+
is_2d = True
|
990 |
+
else:
|
991 |
+
is_2d = False
|
992 |
+
|
993 |
+
img = _to_3d(img)
|
994 |
+
w, h = _get_width_and_height(img)
|
995 |
+
if h >= w:
|
996 |
+
if print:
|
997 |
+
print(f"Resolution: {w}, {h} -> {w}, {h // 2}")
|
998 |
+
img1 = img[: h // 2, :, :]
|
999 |
+
img3 = img[-h // 2 :, :, :]
|
1000 |
+
else:
|
1001 |
+
if print:
|
1002 |
+
print(f"Resolution: {w}, {h} -> {w // 2}, {h}")
|
1003 |
+
img1 = img[:, : w // 2, :]
|
1004 |
+
img3 = img[:, -w // 2 :, :]
|
1005 |
+
if is_2d:
|
1006 |
+
img1 = _to_2d(img1)
|
1007 |
+
img3 = _to_2d(img3)
|
1008 |
+
return img1, img3
|
1009 |
+
|
1010 |
+
|
1011 |
+
def _combine_images_3(img, img1, img2, img3):
|
1012 |
+
if (img1 is None) and (img2 is None) and (img3 is None):
|
1013 |
+
canvas = None
|
1014 |
+
else:
|
1015 |
+
img1 = _to_2d(img1)
|
1016 |
+
img2 = _to_2d(img2)
|
1017 |
+
img3 = _to_2d(img3)
|
1018 |
+
|
1019 |
+
canvas = _get_canvas_same_size_as_image(_to_2d(img), black=True)
|
1020 |
+
|
1021 |
+
w, h = _get_width_and_height(img)
|
1022 |
+
if h >= w:
|
1023 |
+
canvas[: h // 2, :] = img1
|
1024 |
+
canvas[h // 2 // 2 : h // 2 // 2 + h // 2, :] = np.maximum(
|
1025 |
+
canvas[h // 2 // 2 : h // 2 // 2 + h // 2, :], img2
|
1026 |
+
)
|
1027 |
+
canvas[-h // 2 :, :] = np.maximum(canvas[-h // 2 :, :], img3)
|
1028 |
+
else:
|
1029 |
+
canvas[:, : w // 2] = img1
|
1030 |
+
canvas[:, w // 2 // 2 : w // 2 // 2 + w // 2] = np.maximum(
|
1031 |
+
canvas[:, w // 2 // 2 : w // 2 // 2 + w // 2], img2
|
1032 |
+
)
|
1033 |
+
canvas[:, -w // 2 :] = np.maximum(canvas[:, -w // 2 :], img3)
|
1034 |
+
return canvas
|
1035 |
+
|
1036 |
+
|
1037 |
+
def _combine_images_2(img, img1, img2):
|
1038 |
+
if (img1 is None) and (img2 is None):
|
1039 |
+
canvas = None
|
1040 |
+
else:
|
1041 |
+
canvas = _get_canvas_same_size_as_image(img, black=True)
|
1042 |
+
|
1043 |
+
w, h = _get_width_and_height(img)
|
1044 |
+
if h >= w:
|
1045 |
+
canvas[: h // 2, :] = img1
|
1046 |
+
canvas[-h // 2 :, :] = np.maximum(canvas[-h // 2 :, :], img2)
|
1047 |
+
else:
|
1048 |
+
canvas[:, : w // 2] = img1
|
1049 |
+
canvas[:, -w // 2 :] = np.maximum(canvas[:, -w // 2 :], img2)
|
1050 |
+
return canvas
|
1051 |
+
|
1052 |
+
|
1053 |
+
def _rotate_90_degrees(img, counterclockwise=False):
|
1054 |
+
return cv2.rotate(
|
1055 |
+
src=img,
|
1056 |
+
rotateCode=cv2.ROTATE_90_COUNTERCLOCKWISE
|
1057 |
+
if counterclockwise
|
1058 |
+
else cv2.ROTATE_90_CLOCKWISE,
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
|
1062 |
+
def save_image_patches(img, bboxes, dir):
|
1063 |
+
for row in bboxes.itertuples():
|
1064 |
+
patch = _crop_image(
|
1065 |
+
img=img,
|
1066 |
+
l=row.bbox_x1,
|
1067 |
+
t=row.bbox_y1,
|
1068 |
+
r=row.bbox_x2,
|
1069 |
+
b=row.bbox_y2,
|
1070 |
+
)
|
1071 |
+
patch_w = row.bbox_x2 - row.bbox_x1
|
1072 |
+
patch_h = row.bbox_y2 - row.bbox_y1
|
1073 |
+
if patch_h > patch_w:
|
1074 |
+
patch = _rotate_90_degrees(patch, counterclockwise=False)
|
1075 |
+
|
1076 |
+
save_image(img1=patch, path=Path(dir) / f"{str(row.Index).zfill(4)}.jpg")
|
1077 |
+
|
1078 |
+
|
1079 |
+
def get_minimum_area_bounding_rectangle(mask):
|
1080 |
+
bool = _to_2d(mask.astype("uint8")) != 0
|
1081 |
+
nonzero_x = np.where(bool.any(axis=0))[0]
|
1082 |
+
nonzero_y = np.where(bool.any(axis=1))[0]
|
1083 |
+
if len(nonzero_x) != 0 and len(nonzero_y) != 0:
|
1084 |
+
bbox_x1 = nonzero_x[0]
|
1085 |
+
bbox_x2 = nonzero_x[-1]
|
1086 |
+
bbox_y1 = nonzero_y[0]
|
1087 |
+
bbox_y2 = nonzero_y[-1]
|
1088 |
+
return int(bbox_x1), int(bbox_y1), int(bbox_x2), int(bbox_y2)
|
1089 |
+
else:
|
1090 |
+
return 0, 0, 0, 0
|
1091 |
+
|
1092 |
+
|
1093 |
+
def get_minimum_area_bounding_rectangle2(mask, l, t, r, b):
|
1094 |
+
bool = _to_2d(mask.astype("uint8")) != 0
|
1095 |
+
nonzero_x = np.where(bool.any(axis=0))[0]
|
1096 |
+
nonzero_y = np.where(bool.any(axis=1))[0]
|
1097 |
+
try:
|
1098 |
+
new_l = nonzero_x[np.where(l < nonzero_x)][0]
|
1099 |
+
except Exception:
|
1100 |
+
new_l = l
|
1101 |
+
try:
|
1102 |
+
new_t = nonzero_y[np.where(t < nonzero_y)][0]
|
1103 |
+
except Exception:
|
1104 |
+
new_t = t
|
1105 |
+
try:
|
1106 |
+
new_r = nonzero_x[np.where(nonzero_x < r)][-1]
|
1107 |
+
except Exception:
|
1108 |
+
new_r = r
|
1109 |
+
try:
|
1110 |
+
new_b = nonzero_y[np.where(nonzero_y < b)][-1]
|
1111 |
+
except Exception:
|
1112 |
+
new_b = b
|
1113 |
+
return new_l, new_t, new_r, new_b
|
1114 |
+
|
1115 |
+
|
1116 |
+
def _downsample_image(img):
|
1117 |
+
ori_w, ori_h = _get_width_and_height(img)
|
1118 |
+
resized = _resize_image(img, w=ori_w // 2, h=ori_h // 2)
|
1119 |
+
return resized
|
1120 |
+
|
1121 |
+
|
1122 |
+
def _upsample_image(img):
|
1123 |
+
ori_w, ori_h = _get_width_and_height(img)
|
1124 |
+
resized = _resize_image(img, w=ori_w * 2, h=ori_h * 2)
|
1125 |
+
return resized
|
1126 |
+
|
1127 |
+
|
1128 |
+
def _get_pseudo_image(img, mask, invert=False):
|
1129 |
+
if invert:
|
1130 |
+
mask = _invert_image(mask)
|
1131 |
+
rows, cols = np.nonzero(_to_2d(mask))
|
1132 |
+
pseudo_outer = img[rows, cols, :].reshape((1, -1, 3))
|
1133 |
+
return pseudo_outer
|
1134 |
+
|
1135 |
+
|
1136 |
+
def resize_coordinates_and_image_to_fit_to_maximum_pixel_counts(
|
1137 |
+
bboxes, img, max_pixel_counts=1530
|
1138 |
+
):
|
1139 |
+
w, h = _get_width_and_height(img)
|
1140 |
+
ratio = min(max_pixel_counts / h, max_pixel_counts / w)
|
1141 |
+
if ratio < 1:
|
1142 |
+
for col in ["xmin", "ymin", "xmax", "ymax"]:
|
1143 |
+
bboxes[col] = bboxes[col].apply(lambda x: int(x * ratio))
|
1144 |
+
|
1145 |
+
img = cv2.resize(
|
1146 |
+
src=img,
|
1147 |
+
dsize=(int(w * ratio), int(h * ratio)),
|
1148 |
+
interpolation=cv2.INTER_LANCZOS4,
|
1149 |
+
)
|
1150 |
+
return bboxes, img
|
1151 |
+
|
1152 |
+
|
1153 |
+
def get_image_patches_3(img, text_stroke_mask, mask1, mask2):
|
1154 |
+
splitting_mask = get_splitting_mask(text_stroke_mask)
|
1155 |
+
|
1156 |
+
_, _, stats, _ = cv2.connectedComponentsWithStats(
|
1157 |
+
image=_to_2d(splitting_mask), connectivity=4
|
1158 |
+
)
|
1159 |
+
ls_patches = list()
|
1160 |
+
for xmin, ymin, width, height, px_cnt in stats[1:, :]:
|
1161 |
+
xmax = xmin + width
|
1162 |
+
ymax = ymin + height
|
1163 |
+
|
1164 |
+
cropped_img = _crop_image(img=img, l=xmin, t=ymin, r=xmax, b=ymax)
|
1165 |
+
cropped_mask1 = _crop_image(img=mask1, l=xmin, t=ymin, r=xmax, b=ymax)
|
1166 |
+
cropped_mask2 = _crop_image(img=mask2, l=xmin, t=ymin, r=xmax, b=ymax)
|
1167 |
+
ls_patches.append(
|
1168 |
+
{
|
1169 |
+
"xmin": xmin,
|
1170 |
+
"ymin": ymin,
|
1171 |
+
"xmax": xmax,
|
1172 |
+
"ymax": ymax,
|
1173 |
+
"img": cropped_img,
|
1174 |
+
"mask1": cropped_mask1,
|
1175 |
+
"mask2": cropped_mask2,
|
1176 |
+
}
|
1177 |
+
)
|
1178 |
+
return ls_patches
|
1179 |
+
|
1180 |
+
|
1181 |
+
def get_image_patches_2(img, mask1, mask2):
|
1182 |
+
splitting_mask = get_splitting_mask(mask1)
|
1183 |
+
|
1184 |
+
_, _, stats, _ = cv2.connectedComponentsWithStats(
|
1185 |
+
image=_to_2d(splitting_mask), connectivity=4
|
1186 |
+
)
|
1187 |
+
ls_patches = list()
|
1188 |
+
for x1, y1, w, h, _ in stats[1:, :]:
|
1189 |
+
x2 = x1 + w
|
1190 |
+
y2 = y1 + h
|
1191 |
+
|
1192 |
+
cropped_img = _crop_image(img=img, l=x1, t=y1, r=x2, b=y2)
|
1193 |
+
cropped_mask1 = _crop_image(img=mask1, l=x1, t=y1, r=x2, b=y2)
|
1194 |
+
cropped_mask2 = _crop_image(img=mask2, l=x1, t=y1, r=x2, b=y2)
|
1195 |
+
|
1196 |
+
ls_patches.append(
|
1197 |
+
{
|
1198 |
+
"x1": x1,
|
1199 |
+
"y1": y1,
|
1200 |
+
"x2": x2,
|
1201 |
+
"y2": y2,
|
1202 |
+
"img": cropped_img,
|
1203 |
+
"mask1": cropped_mask1,
|
1204 |
+
"mask2": cropped_mask2,
|
1205 |
+
}
|
1206 |
+
)
|
1207 |
+
return ls_patches
|
1208 |
+
|
1209 |
+
|
1210 |
+
def get_splitting_mask(text_stroke_mask):
|
1211 |
+
splitting_mask = _dilate_mask(text_stroke_mask, kernel_size=200)
|
1212 |
+
return splitting_mask
|
1213 |
+
|
1214 |
+
|
1215 |
+
def enhance_sharpness(img):
|
1216 |
+
"""imgμ μ λͺ
λλ₯Ό λμ. 3κ°μ§ λ°©λ²μ΄ μμ(sharpening filter, unsharpening mask, pil sharpening)
|
1217 |
+
3 λ°©λ² μ€ PIL μ΄ κ°μ₯ μλ³Έμ μλ³νκ° μ μ
|
1218 |
+
Args:
|
1219 |
+
img (_np.ndarray_): μ΄λ―Έμ§
|
1220 |
+
|
1221 |
+
Returns:
|
1222 |
+
_np.ndarray_: κ²°κ³Ό μ΄λ―Έμ§
|
1223 |
+
"""
|
1224 |
+
# sharpening_k = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
|
1225 |
+
# hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
|
1226 |
+
# sharpened_v = cv2.filter2D(hsv[..., 2], -1, sharpening_k)
|
1227 |
+
# hsv[..., 2] = sharpened_v
|
1228 |
+
# img_patch2 = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
|
1229 |
+
|
1230 |
+
# src_ycrcb = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
|
1231 |
+
# src_f = src_ycrcb[:, :, 0].astype(np.float32)
|
1232 |
+
# blr = cv2.GaussianBlur(src_f, (0, 0), 2.0)
|
1233 |
+
# src_ycrcb[:, :, 0] = np.clip(2. * src_f - blr, 0, 255).astype(np.uint8)
|
1234 |
+
# img_patch3 = cv2.cvtColor(src_ycrcb, cv2.COLOR_YCrCb2RGB)
|
1235 |
+
|
1236 |
+
pil_img = _to_pil(img)
|
1237 |
+
sharpness_img = ImageEnhance.Sharpness(pil_img).enhance(2)
|
1238 |
+
result_img = _to_array(sharpness_img)
|
1239 |
+
|
1240 |
+
return result_img
|
1241 |
+
|
1242 |
+
|
1243 |
+
def mask2point(mask):
|
1244 |
+
# mask (H,W,3) 0 or 255 -> (N,2)
|
1245 |
+
mask = _to_2d(mask)
|
1246 |
+
indices = np.argwhere(mask == 255)
|
1247 |
+
return indices
|
1248 |
+
|
1249 |
+
|
1250 |
+
def get_corner(corner_coords):
|
1251 |
+
# corner_coords (N,2) each point means (y,x)
|
1252 |
+
cy, cx = np.mean(corner_coords, axis=0)
|
1253 |
+
quadrant_1 = corner_coords[(corner_coords[:, 0] < cy) & (corner_coords[:, 1] >= cx)]
|
1254 |
+
rt = quadrant_1[:, 1].max(), quadrant_1[:, 0].min()
|
1255 |
+
|
1256 |
+
quadrant_2 = corner_coords[(corner_coords[:, 0] < cy) & (corner_coords[:, 1] < cx)]
|
1257 |
+
lt = quadrant_2[:, 1].min(), quadrant_2[:, 0].min()
|
1258 |
+
|
1259 |
+
quadrant_3 = corner_coords[(corner_coords[:, 0] >= cy) & (corner_coords[:, 1] < cx)]
|
1260 |
+
lb = quadrant_3[:, 1].min(), quadrant_3[:, 0].max()
|
1261 |
+
|
1262 |
+
quadrant_4 = corner_coords[
|
1263 |
+
(corner_coords[:, 0] >= cy) & (corner_coords[:, 1] >= cx)
|
1264 |
+
]
|
1265 |
+
rb = quadrant_4[:, 1].max(), quadrant_4[:, 0].max()
|
1266 |
+
|
1267 |
+
return lt, rt, rb, lb
|
1268 |
+
|
1269 |
+
|
1270 |
+
def get_dst_mask(mask):
|
1271 |
+
mask = _to_2d(mask)
|
1272 |
+
dst = cv2.distanceTransform(mask, cv2.DIST_L2, 5)
|
1273 |
+
# 거리 κ°μ 0 ~ 255 λ²μλ‘ μ κ·ν ---β‘
|
1274 |
+
dist_transform_normalized = cv2.normalize(
|
1275 |
+
dst, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U
|
1276 |
+
)
|
1277 |
+
return _to_3d(dist_transform_normalized)
|
1278 |
+
|
1279 |
+
|
1280 |
+
def unwarp(img, src, dst):
|
1281 |
+
h, w = img.shape[:2]
|
1282 |
+
# use cv2.getPerspectiveTransform() to get M, the transform matrix, and Minv, the inverse
|
1283 |
+
M = cv2.getPerspectiveTransform(src, dst)
|
1284 |
+
# use cv2.warpPerspective() to warp your image to a top-down view
|
1285 |
+
warped = cv2.warpPerspective(img, M, (w, h), flags=cv2.INTER_LINEAR)
|
1286 |
+
|
1287 |
+
return warped, M
|
1288 |
+
|
1289 |
+
|
1290 |
+
def perspective_correction(img, src=None, vis=False, method: PC_TYPE = PC_TYPE.HARRIS):
|
1291 |
+
# img (H,W,C) 0~255, src=[[ltx,lty],[rtx,rty],[rbx,rby],[lbx,lby]]
|
1292 |
+
if src is None:
|
1293 |
+
gray = _to_grayscale(img)
|
1294 |
+
|
1295 |
+
if not isinstance(method, PC_TYPE):
|
1296 |
+
raise ValueError(
|
1297 |
+
f"Invalid method: {method}. Expected one of {list(PC_TYPE)}."
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
if method == PC_TYPE.HARRIS:
|
1301 |
+
corner = cv2.cornerHarris(gray, 5, 3, 0.04) # (H,W) value: corner score
|
1302 |
+
threshold = 0.005 * corner.max()
|
1303 |
+
corner_coords = np.argwhere(corner > threshold)
|
1304 |
+
|
1305 |
+
elif method == PC_TYPE.EDGES_CONTOURS:
|
1306 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
1307 |
+
edges = cv2.Canny(blurred, 50, 150)
|
1308 |
+
contours, _ = cv2.findContours(
|
1309 |
+
edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
1310 |
+
)
|
1311 |
+
contour_points = []
|
1312 |
+
for cs in contours:
|
1313 |
+
c = [css for css in cs]
|
1314 |
+
contour_points.extend(c)
|
1315 |
+
corner_coords = np.array(contour_points).reshape(-1, 2)[..., ::-1]
|
1316 |
+
|
1317 |
+
elif method == PC_TYPE.GFTT:
|
1318 |
+
corners = cv2.goodFeaturesToTrack(
|
1319 |
+
gray, 0, 0.01, 5, blockSize=3, useHarrisDetector=True, k=0.03
|
1320 |
+
)
|
1321 |
+
corner_coords = corners.reshape(corners.shape[0], 2)[..., ::-1]
|
1322 |
+
|
1323 |
+
elif method == PC_TYPE.FAST:
|
1324 |
+
th = 50
|
1325 |
+
fast = cv2.FastFeatureDetector_create(th)
|
1326 |
+
keypoints = fast.detect(gray)
|
1327 |
+
corner_coords = np.array([[kp.pt[1], kp.pt[0]] for kp in keypoints])
|
1328 |
+
|
1329 |
+
elif method == PC_TYPE.KAZE:
|
1330 |
+
# feature = cv2.SIFT_create()
|
1331 |
+
feature = cv2.KAZE_create()
|
1332 |
+
|
1333 |
+
keypoints = feature.detect(gray)
|
1334 |
+
corner_coords = np.array([[kp.pt[1], kp.pt[0]] for kp in keypoints])
|
1335 |
+
|
1336 |
+
if vis:
|
1337 |
+
view_img = img.copy()
|
1338 |
+
for corner in corner_coords:
|
1339 |
+
y, x = corner
|
1340 |
+
cv2.circle(view_img, (int(x), int(y)), 3, (255, 0, 0), 2)
|
1341 |
+
save_image(view_img, path="vis_corner.png")
|
1342 |
+
|
1343 |
+
lt, rt, rb, lb = get_corner(corner_coords)
|
1344 |
+
|
1345 |
+
src = np.float32([lt, rt, rb, lb])
|
1346 |
+
|
1347 |
+
dst = np.float32(
|
1348 |
+
[
|
1349 |
+
(0, 0),
|
1350 |
+
(img.shape[1] - 1, 0),
|
1351 |
+
(img.shape[1] - 1, img.shape[0] - 1),
|
1352 |
+
(0, img.shape[0] - 1),
|
1353 |
+
]
|
1354 |
+
)
|
1355 |
+
|
1356 |
+
result, M = unwarp(img, src, dst)
|
1357 |
+
save_image(result, path="cv_result.png")
|
1358 |
+
return result
|
1359 |
+
|
1360 |
+
|
1361 |
+
if __name__ == "__main__":
|
1362 |
+
image_url = "https://d2reotjpatzlok.cloudfront.net/qr-place/item/QR_20240726_2441_2_LZ1ZFCT38HN7PPCEZR8H.jpg"
|
1363 |
+
img, imgdata, format = load_image(image_url, with_byte=True, with_format=True)
|
1364 |
+
perspective_correction(img, vis=True)
|
rect_main.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import warnings
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from config import Config
|
11 |
+
from data_utils.image_utils import _to_2d
|
12 |
+
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
+
|
15 |
+
DocTr_Plus = importlib.import_module("models.DocTr-Plus.inference")
|
16 |
+
DocScanner = importlib.import_module("models.DocScanner.inference")
|
17 |
+
|
18 |
+
cuda = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
mask_dict = defaultdict(int)
|
21 |
+
|
22 |
+
|
23 |
+
def load_geotrp_model(cuda, path=""):
|
24 |
+
|
25 |
+
_GeoTrP = DocTr_Plus.GeoTrP()
|
26 |
+
_GeoTrP = _GeoTrP.to(cuda)
|
27 |
+
DocTr_Plus.reload_model(_GeoTrP.GeoTr, path)
|
28 |
+
_GeoTrP.eval()
|
29 |
+
|
30 |
+
return _GeoTrP
|
31 |
+
|
32 |
+
|
33 |
+
def load_docscanner_model(cuda, path_l="", path_m=""):
|
34 |
+
|
35 |
+
net = DocScanner.Net().to(cuda)
|
36 |
+
DocScanner.reload_seg_model(net.msk, path_m)
|
37 |
+
DocScanner.reload_rec_model(net.bm, path_l)
|
38 |
+
net.eval()
|
39 |
+
|
40 |
+
return net
|
41 |
+
|
42 |
+
|
43 |
+
def preprocess_image(img, target_size=[288, 288]):
|
44 |
+
im_ori = img[:, :, :3] / 255.0
|
45 |
+
h_, w_, _ = im_ori.shape
|
46 |
+
im_ori_resized = cv2.resize(im_ori, (288, 288))
|
47 |
+
|
48 |
+
im = cv2.resize(im_ori_resized, target_size)
|
49 |
+
im = im.transpose(2, 0, 1)
|
50 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
51 |
+
|
52 |
+
return im_ori, im, h_, w_
|
53 |
+
|
54 |
+
|
55 |
+
def geotrp_rec(img, model):
|
56 |
+
im_ori, im, h_, w_ = preprocess_image(img)
|
57 |
+
|
58 |
+
with torch.no_grad():
|
59 |
+
bm = model(im.cuda())
|
60 |
+
bm = bm.cpu().numpy()[0]
|
61 |
+
bm0 = bm[0, :, :]
|
62 |
+
bm1 = bm[1, :, :]
|
63 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
64 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
65 |
+
|
66 |
+
img_geo = cv2.remap(im_ori, bm0, bm1, cv2.INTER_LINEAR) * 255
|
67 |
+
img_geo = cv2.resize(img_geo, (w_, h_))
|
68 |
+
|
69 |
+
return img_geo
|
70 |
+
|
71 |
+
|
72 |
+
def docscanner_get_mask(img, model):
|
73 |
+
_, im, h, w = preprocess_image(img)
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
_, msk = model(im.cuda())
|
77 |
+
msk = msk.cpu()
|
78 |
+
|
79 |
+
mask_np = (msk[0, 0].numpy() * 255).astype(np.uint8)
|
80 |
+
mask_resized = cv2.resize(mask_np, (w, h))
|
81 |
+
|
82 |
+
return mask_resized
|
83 |
+
|
84 |
+
|
85 |
+
def docscanner_rec_img(img, model):
|
86 |
+
im_ori, im, h, w = preprocess_image(img)
|
87 |
+
|
88 |
+
with torch.no_grad():
|
89 |
+
bm = model(im.cuda())
|
90 |
+
bm = bm.cpu()
|
91 |
+
|
92 |
+
# save rectified image
|
93 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
|
94 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
|
95 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
96 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
97 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
|
98 |
+
out = F.grid_sample(
|
99 |
+
torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(),
|
100 |
+
lbl,
|
101 |
+
align_corners=True,
|
102 |
+
)
|
103 |
+
img = (((out[0] * 255).permute(1, 2, 0).numpy())[:, :, ::-1]).astype(np.uint8)
|
104 |
+
|
105 |
+
return img
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def docscanner_rec(img, model):
|
110 |
+
im_ori = img[:, :, :3] / 255.0
|
111 |
+
h, w, _ = im_ori.shape
|
112 |
+
im = cv2.resize(im_ori, (288, 288))
|
113 |
+
im = im.transpose(2, 0, 1)
|
114 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
115 |
+
|
116 |
+
with torch.no_grad():
|
117 |
+
bm, msk = model(im.cuda())
|
118 |
+
bm = bm.cpu()
|
119 |
+
msk = msk.cpu()
|
120 |
+
|
121 |
+
mask_np = (msk[0, 0].numpy() * 255).astype(np.uint8)
|
122 |
+
mask_resized = cv2.resize(mask_np, (w, h))
|
123 |
+
mask_img = mask_resized
|
124 |
+
|
125 |
+
# save rectified image
|
126 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
|
127 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
|
128 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
129 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
130 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
|
131 |
+
out = F.grid_sample(
|
132 |
+
torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(),
|
133 |
+
lbl,
|
134 |
+
align_corners=True,
|
135 |
+
)
|
136 |
+
img = (((out[0] * 255).permute(1, 2, 0).numpy())[:, :, ::-1]).astype(np.uint8)
|
137 |
+
|
138 |
+
return img, mask_img
|
139 |
+
|
140 |
+
|
141 |
+
# μΆν data_utilsμ λ£μ μμ
|
142 |
+
def get_mask_white_area(mask):
|
143 |
+
"""
|
144 |
+
Get the white area (non-zero pixels) of a mask.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
mask (np.ndarray): Input mask image (2D or 3D array)
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
np.ndarray: Array of (y, x) coordinates of white pixels
|
151 |
+
"""
|
152 |
+
mask = _to_2d(mask)
|
153 |
+
white_pixels = np.argwhere(mask > 0)
|
154 |
+
return white_pixels
|
155 |
+
|
156 |
+
|
157 |
+
def main():
|
158 |
+
|
159 |
+
config = Config()
|
160 |
+
|
161 |
+
img = cv2.imread("input/test.jpg") # μ½λ μ€νμ μμ νμ
|
162 |
+
|
163 |
+
docscanner = load_docscanner_model(
|
164 |
+
cuda, path_l=config.get_rec_model_path, path_m=config.get_seg_model_path
|
165 |
+
)
|
166 |
+
doctr = load_geotrp_model(cuda, path=config.get_geotr_model_path)
|
167 |
+
|
168 |
+
mask = docscanner_get_mask(img, docscanner)
|
169 |
+
mask_dict.add(get_mask_white_area(mask))
|
170 |
+
|
171 |
+
|
172 |
+
if __name__ == "__main__":
|
173 |
+
main()
|
seg.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb79fdec55a5ed435dc74d8112aa9285d8213bae475022f711c709744fb19dd4
|
3 |
+
size 4715923
|